DOI QR코드

DOI QR Code

해상 크레인을 이용한 해상 풍력 발전기의 다물체계 동역학 설치 해석

Installation Analysis of Multibody Systems Dynamics of an Offshore Wind Turbine Using an Offshore Floating Crane

  • 구남국 (서울대학교 공학연구소) ;
  • 하솔 (서울대학교 공학연구소) ;
  • 김기수 (서울대학교 조선해양공학과 대학원) ;
  • 노명일 (서울대학교 조선해양공학과 및 해양시스템공학연구소)
  • Ku, Nam-Kug (Engineering Research Institute, Seoul National University) ;
  • Ha, Sol (Engineering Research Institute, Seoul National University) ;
  • Kim, Ki-Su (Department of the Naval Architecture and Ocean Engineering, Graduate School, Seoul National University) ;
  • Roh, Myung-Il (Department of the Naval Architecture and Ocean Engineering, and Research Institute of Marine Systems Engineering, Seoul National University)
  • 투고 : 2013.06.15
  • 심사 : 2013.08.12
  • 발행 : 2013.08.30

초록

신재생, 친환경 에너지에 대한 관심의 증가로 최근 상당수의 풍력 발전기가 설치되고 있다. 특히, 육상과 달리 부지 확보의 어려움도 없고 고품질의 바람을 얻을 수 있다는 점에서 해상 풍력 발전기가 더욱 주목을 받고 있다. 이와 같은 장점을 가진 해상 풍력 발전기는 육상의 조선소 등에서 제작된 후, 해상 크레인을 이용하여 운용 지점까지 이송되어 설치되는데, 이때 그 크기의 거대함과 고가라는 이유로 무엇보다 안전이 보증되어야 한다. 따라서 본 연구에서는 해상 풍력 발전기의 이송 및 설치 시 안전성을 보증하기 위한 근거로서, 다물체계 동역학 기법을 활용하여 해상 크레인에 연결된 해상 풍력 발전기의 동역학 해석을 수행하였다. 그 결과, 본 기법이 해상 풍력 발전기의 이송 및 설치방법에 대한 검증용으로 충분히 활용 가능함을 확인할 수 있었다.

Recently, a number of wind turbines are being installed due to the increase of interest in renewable, environment-friendly energy. Especially, an offshore wind turbine is being watched with keen interest in that it has no difficulty in securing a site and can get high quality of wind, as compared with a wind turbine on land. The offshore wind turbine is transferred to and installed on the site by an offshore floating crane after it was made in a factory on land such as shipyard. At this time, it is important to secure the safety of the turbine because of its huge size and expensive cost. Thus, a dynamic analysis of the offshore wind turbine which is connedted with the offshore floating crane was performed based on the multibody systems dynamics in this study. As a result. it is shown that the analysis can be applied to verify the safety of a method for the transportation and installation of the offshore wind turbine suspended by the crane.

키워드

참고문헌

  1. Ku, N,K., Rho, M.I., Lee, K.Y. (2012) Dynamic Constrained Force of Tower Top and Rotor Shaft of Floating Wind Turbine, Computational Structural Engineering, 25(5), pp.375-380.
  2. Park, K.P. (2011) Flexible Multibody Dynamics of Floating Offshore Wind Turbine in Marine Operations, Ph. D. Thesis, Naval Architecture and Ocean Engineering, Seoul National University.
  3. Lim, O.K., Jung, K.Y., Lee, D.Y., Choi, E.H., Cho, J.R. (2012) Optimum Shape Design of Gearbox Housing for 5MW Wind Turbines, Computational Structural Engineering, 25(3), pp.237-244.
  4. Choi, H.C., Kim, D.H., Kim, D.M., Park, K.K. (2010) Seismic Response Analysis of a MW Class Wind-Turbine Considering Applied Wind Loads, Computational Structural Engineering, 23(2), pp.209 -216.
  5. Kim, S.O., Kim, H.W., Ko, C.B., Kyong, N.H. (2011) Construction of the 2MW-Offshore Wind Turbine, Journal of Wind Energy, 2(2), pp.3-9.
  6. Fingersh, L., H., M., Laxson, A. (2006) Wind Turbine Design Cost and Scaling Model, Technical Report, NRE/TP-500-40566.
  7. Kaiser, M.J., Snyder, B. (2010) Offshore Wind Energy Installation and Decommissioning Cost Estimation in the U.S. Outer Continental Shelf, U.S. Dept. of the Interior, Bureau of Ocean Energy Management, Regulation and Enforcement, Herndon, VA. TA&R Study 648, p.340.
  8. Ku, N.K., Ha, S., Lee, K.Y., Roh, M.I. (2012) Dynamic Response Simulation of Lunching Process of the Ship Using Two Floating Cranes Based on Multi-Body System, Proceedings of the Spring Meeting of the Society of Naval Architecture of Korea, pp.435-441.
  9. Cha, J.H., Roh, M.I., Lee, K.Y. (2010) Integrated Simulation Framework for the Process Planning of Ships and Offshore Structures, Robotics and Computer-Integrated Manufacturing Journal, 26(5), pp.430-453. https://doi.org/10.1016/j.rcim.2010.01.001
  10. HowStuffWorks (2013) Wind Energy, http://www.howstuffworks.com
  11. Jonkman, J., Butterfield, S., Musial, W., Scott, G. (2009) Definition of a 5-MW Reference Wind Turbine for Offshore System Development, Technical Report, NREL/TP-500-38060.
  12. Nielsen, F.G., Hanson, T.D., Skaare, B. (2006) Integrated Dynamic Analysis of Floating Offshore Wind Turbines, Proceedings of 25th International Conference on Offshore Mechanics and Arctic Engineering, Hamburg, Germany.
  13. Park, K.P., Cha, J.H., Lee, K.Y. (2011) Dynamic Factor Analysis Considering Elastic Boom Effects in Heavy Lifting Operations, Ocean Engineering, 38(10), pp.1100-1113. https://doi.org/10.1016/j.oceaneng.2011.04.007