DOI QR코드

DOI QR Code

Quantitative analysis of selenium species in sea food using solid phase extraction and HPLC-ICP/MS

해산물 시료에서 solid-phase extraction 및 HPLC-ICP/MS를 이용한 셀레늄 화학종의 정량분석

  • Kim, Eunju (Department of Chemistry Education, Korea National University of Education) ;
  • Joo, Minkyu (Department of Chemistry Education, Korea National University of Education) ;
  • Kwon, Hyosik (Department of Chemistry Education, Chungbuk National University of Education) ;
  • Pak, Yongnam (Department of Chemistry Education, Korea National University of Education)
  • 김은주 (한국교원대학교 화학교육과) ;
  • 주민규 (한국교원대학교 화학교육과) ;
  • 권효식 (충북대학교 화학교육학과) ;
  • 박용남 (한국교원대학교 화학교육과)
  • Received : 2013.08.13
  • Accepted : 2013.09.02
  • Published : 2013.10.25

Abstract

Selenium exists in various forms of chemical species. The activity and bioavailability is strongly dependent on its chemical form and concentration. Consequently the information on each selenium species and its concentration must be exactly determined for the food we take in. In this study, selenium species in seafood were separated and quantified by RP (reversed phase) HPLC (high performance liquid chromatography) coupled with ICP-MS (inductively coupled plasma mass spectrometry) using post-column isotope dilution. $^{79}Br$, which interferes on $^{80}Se$, has mostly been removed by solid phase extraction and then mathematical correction has been applied for the more accurate correction. The experimental result for CRM (certified reference material) DOLT-4 agreed well with the certified value but each selenium species could not be compared. SeCys (selenocysteine) and SeMet (selenomethionine) were the major species detected in seafood such as belt fish, spanish mackerel, and squid that have been serving as Korean diet. The concentrations found in Korean sea food for SeCys and SeMet were in the range of 0-661.6 mg/kg and 137.3-462.7 mg/kg, respectively.

셀레늄은 다양한 화학종으로 존재하며 그 농도와 형태에 따라 활성도나 생물학적 이용도가 달라지므로 식품에 대한 셀레늄 화학종의 정확한 분리 및 정량이 필요하다. 본 연구에서는 역상 (RP; reversed phase) 고성능 액체 크로마토그래피 (HPLC; high performance liquid chromatography)와 유도결합 플라즈마 (ICP; inductively coupled plasma) 질량분석법 (MS; mass spectrometry)을 사용하여 해산물 시료 중 셀레늄 화학종을 분리 검출 한 뒤에 후 컬럼 동위원소희석법 (post column isotope dilution)으로 정확히 정량 하였다. 시료 중 $^{80}Se$의 간섭요인인 $^{79}Br$을 제거하기 위해 고체상 추출법을 사용하여 대부분의 $^{79}Br$을 제거하였고 남아있는 $^{79}Br$은 수학적 보정식을 이용하여 보정해주었다. CRM (certified reference material) DOLT-4를 사용하여 셀레늄의 총량을 분석한 결과는 인증치와 잘 일치하였지만 각 화학종에 대한 정보는 비교할 수 없었다. 한국인 식탁에 오르는 대표적인 해산물 시료인 갈치, 삼치, 오징어, 등을 분석한 결과, 주된 셀레늄 화학종은 SeCys (selenocysteine)와 SeMet (selenomethionine)이었으며 각각은 0-661.6 mg/kg and 137.3-462.7 mg/kg의 농도로 존재함 을 알 수 있었다.

Keywords

References

  1. C. D. Thompson, Assesment of requirements for Se and adequacy of Se status: a review. Eur. J. Clin. Nutr., 58, 391-402 (2004). https://doi.org/10.1038/sj.ejcn.1601800
  2. S. B. Goldhaber, Regulatory Toxicol. and Pharm., 38, 232-242 (2003). https://doi.org/10.1016/S0273-2300(02)00020-X
  3. L. V. Rapp, J. Lu, A. Holmgren and K. K. Khanna, Antioxid. Redox Signal., 9, 775-806 (2007). https://doi.org/10.1089/ars.2007.1528
  4. U. Tinggi, Toxicol. Lett., 137, 103-110 (2003). https://doi.org/10.1016/S0378-4274(02)00384-3
  5. R. C. McKenzie Jr., T. S. Rafferty, and G. J. Beckett, Immunol. Today, 19, 342-345 (1998). https://doi.org/10.1016/S0167-5699(98)01294-8
  6. P. Leonhard, R. Pepelink, A. Prange, N. Yamad and T. Yamada, J. Anal. At. Spectrom., 17, 189-197 (2002). https://doi.org/10.1039/b110180n
  7. D. Wallschlager and J. London, J. Anal. At. Spectrom., 19, 1119-1125 (2004). https://doi.org/10.1039/b401616e
  8. P. C. Uden, Anal. Bioanal. Chem., 373, 422-431 (2002). https://doi.org/10.1007/s00216-002-1405-9
  9. M. Navaro-Alarcon and C. Cabrea-Vique, A review. Sci. Redox Signal., 9, 775-806 (2008).
  10. Y. J. Choi, J. Y. Kim, H. S. Lee, C. I. Kim, I. K. Hwang, H. K. Park and C. H. Oh, J. of Food Comp. and Anal., 22, 117-122 (2009). https://doi.org/10.1016/j.jfca.2008.11.009
  11. Y. Miyazaki, H. Koyama, Y. Sasada, H. Satoh, M. Nojiri, and S. Suzuki, J. Nutr. Sci. Vitaminol., 50, 309-319 (2004). https://doi.org/10.3177/jnsv.50.309
  12. H. S. Douglas, V. C. Morris, J. H. Soares Jr. and O. A. Leavander, J. Nutr., 111, 2180-2187 (1981). https://doi.org/10.1093/jn/111.12.2180
  13. B. O. Gabrielsen and J. Opstvedt, J. Nutr., 110, 1096-1100 (1980). https://doi.org/10.1093/jn/110.6.1096
  14. T. E. Fox, E. G. H. M. Van den Heuvel, C. A. Atherton, J. R. Dainty, D. J. Lewis, N. J. Langford, H. M. Crews, J. B. Luten, P. Van Dael and S. J. Fairweather-Tait, Eur. H. Clin. Nutr., 58, 343-349 (2004). https://doi.org/10.1038/sj.ejcn.1601787
  15. M. Yoshida, M. Abe, K. Fukunaga and K. Kikuchi, Food Addit. Contam., 19, 990-995 (2002). https://doi.org/10.1080/02652030110114202
  16. D. H. Vanesa, L. F. S. Maria and S. M. Alfredo, Anal. Chim. Acta, 538, 99-105 (2005). https://doi.org/10.1016/j.aca.2005.02.033
  17. T. Celine, R. Ann, D. T. Ludwig, S. Yves-Jacques and P. Luc, Food Chemistry, 130, 767-784 (2012). https://doi.org/10.1016/j.foodchem.2011.07.102
  18. P. Moreno, M. A. Quijano, A. M. Gutierrez, M. C. Perez-Conde and C. Camara, Anal. Chim. Acta, 524, 315-327 (2004). https://doi.org/10.1016/j.aca.2004.02.029
  19. L. H. Reyes, J. L. Mar, G. M. Rahman, B. Seybert, T. Fahrengolz and H. M. Kingston, Talanta, 78, 983-990 (2009). https://doi.org/10.1016/j.talanta.2009.01.003
  20. M. A. Quijano, P. Moreno, A. M. Gutierrez, M. C. Perez-Code and C. Camara, J. of Mass Spectrom., 35, 878-884 (2000). https://doi.org/10.1002/1096-9888(200007)35:7<878::AID-JMS12>3.0.CO;2-2
  21. H. Jang, H. Min, J. Lee and Y. Pak, Anal. Sci. Tech., 26, 182-189 (2013). https://doi.org/10.5806/AST.2013.26.3.182
  22. D. Schaumloffel, K. Bierla and R. Lobinski, J. Anal. At. Spectrom., 22, 318-321 (2007). https://doi.org/10.1039/b611324a
  23. K. G. Heumann, L. Rottmann and J. Vogl, J. Anal. At. Spectrom., 9, 1351-1362 (1994). https://doi.org/10.1039/ja9940901351
  24. H. Cho, Y. Pak, J. of Kor. Chem. Soc., 55(3), 472-477 (2011). https://doi.org/10.5012/jkcs.2011.55.3.472
  25. N. Luque, S. Rubio and D. Perez-Bendito, Anal. Chim. Acta, 584, 181-188 (2007). https://doi.org/10.1016/j.aca.2006.11.022
  26. M. Dernovicsa and R. Lobinski, J. Anal. At. Spectrom., 23, 744-751 (2008). https://doi.org/10.1039/b716140a
  27. Korea Food & Drug Administration 위해 예방정책과, 유해물질 총서, 셀레늄, 2010. 12, Republic of Korea.

Cited by

  1. A short study of uncertainty for post column isotope dilution method in HPLC-ICP/MS vol.27, pp.6, 2014, https://doi.org/10.5806/AST.2014.27.6.269
  2. Study of improving precision and accuracy by using an internal standard in post column isotope dilution method for HPLC-ICP/MS vol.27, pp.3, 2014, https://doi.org/10.5806/AST.2014.27.3.140