DOI QR코드

DOI QR Code

Chromium(III) Complex Obtained from Dipicolinic Acid: Synthesis, Characterization, X-Ray Crystal Structure and Electrochemical Studies

  • Ghasemi, Khaled (Department of Chemistry, Faculty of Science, University of Sistan and Baluchestan) ;
  • Rezvani, Ali Reza (Department of Chemistry, Faculty of Science, University of Sistan and Baluchestan) ;
  • Razak, Ibrahim Abdul (X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia) ;
  • Moghimi, Abolghasem (Department of Chemistry, Imam Hossein University) ;
  • Ghasemi, Fatemeh (Department of Chemistry, Faculty of Science, University of Sistan and Baluchestan) ;
  • Rosli, Mohd Mustaqim (X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia)
  • Received : 2013.06.05
  • Accepted : 2013.07.30
  • Published : 2013.10.20

Abstract

The synthesis, X-ray crystallography, spectroscopic (IR, UV-vis), and electrochemical properties of the title compound, $[H_3O][Cr(dipic)_2][H_3O^+.Cl^-]$ (1), ($H_2dipic$ = 2,6-pyridinedicarboxylic acid), are reported. This complex crystallizes in the monoclinic space group Cc with a = 14.9006(10) ${\AA}$, b = 12.2114(8) ${\AA}$, c = 8.6337(6) ${\AA}$, ${\alpha}=90.00^{\circ}$, ${\beta}=92.7460(10)^{\circ}$, ${\gamma}=90.00^{\circ}$, and V = 1569.16(18) ${\AA}^3$ with Z = 4. The hydrogen bonding and noncovalent interactions play roles in the stabilization of the structure. In order to gain a better understanding of the most important geometrical parameters in the structure of the complex, atoms in molecules (AIM) method at B3LYP/6-31G level of theory has been employed.

Keywords

References

  1. Lukes, R.; Jurecek, M. Coll. Czech. Chem. Commun. 1948, 13, 131. https://doi.org/10.1135/cccc19480131
  2. Dutta, R. L.; Ghosh, S. J. Indian Chem. Soc. 1967, 44, 273.
  3. Drew, M. G. B.; Matthews, R. W.; Walton, R. A. J. Chem. Soc. A 1970, 1405. https://doi.org/10.1039/j19700001405
  4. Murtha, D. P.; Walton, R. A. Inorg. Chem. 1973, 12, 1278. https://doi.org/10.1021/ic50124a013
  5. Gaw, H.; Robinson, W. R.; Walton, R. W. Inorg. Nucl. Chem. Lett. 1971, 7, 695. https://doi.org/10.1016/0020-1650(71)80074-0
  6. Cingi, M. B.; Villa, A. C.; Guastini, C.; Nardelli, M. Gazz. Chim. Ital. 1971, 101, 825.
  7. Vincent, J. B. Acc. Chem. Res. 2000, 33, 503. https://doi.org/10.1021/ar990073r
  8. Ranjbar, M.; Aghabozorg, H.; Moghimi, A.; Yanovsky, A. Z. Kristallogr. New Cryst. Struct. 2001, 216, 626.
  9. Aghabozorg, H.; Derikvand, Z.; Olmstead, M. M.; Attar Gharamaleki, J. Acta Crystallogr. 2008, E64, m1234.
  10. Soleimannejad, J.; Aghabozorg, H.; Hooshmand, S. Acta Crystallogr. 2008, E64, m564.
  11. Furst, W.; Gouzerh, P.; Jeannin, Y. J. Coord. Chem. 1979, 8, 237. https://doi.org/10.1080/00958977908076503
  12. Casellato, U.; Graziani, R.; Bonomo, R. P.; Di Bilio, A. J. J. Chem. Soc., Dalton Trans. 1991, 23.
  13. Rafizadeh, M.; Amani, V.; Neumuller, B. Z. Anorg. Allg. Chem. 2006, 632, 2190. https://doi.org/10.1002/zaac.200600178
  14. Braga, D.; Bazzi, C.; Maini, L.; Grepioni, F. Cryst. Eng. Commun. 1999, 1, 15. https://doi.org/10.1039/a907565h
  15. Hartkamp, H. Z. Anal. Chem. 1962, 187, 16. https://doi.org/10.1007/BF00634608
  16. Vincent, J. B. J. Nutrit. 2000, 130, 715.
  17. Mertz, W.; Schwarz, K. Am. J. Physiol. 1959, 196, 614.
  18. Furst, W.; Gouzerch, P.; Jeannin, Y. J. Coord. Chem. 1978, 8, 237.
  19. Payne, V.; Headley, O.; Stibrany, R.; Maragh, P.; Dasgupta, T.; Newton, A.; Holder, A. J. Chem. Crystallogr. 2007, 37, 309. https://doi.org/10.1007/s10870-007-9181-1
  20. Aghajani, Z.; Aghabozorg, H.; Sadr-Khanlou, E.; Shokrollahi, A.; Derki, S.; Shamsipur, M. J. Iran. Chem. Soc. 2009, 6, 373. https://doi.org/10.1007/BF03245847
  21. Frisch, M. J.; et al. Gaussian 98, Revision A. 7, Gaussian, Inc., Pittsburg h, PA, 1998.
  22. Bruker, APEX2, Bruker AXS Inc., Madison, Wisconsin, USA, 2009.
  23. Sheldrick, G. M. Acta Cryst. 2008, A64, 112.
  24. Lin-Vien, D.; Colthup, N. B.; Fately, W. G.; Grasselli, J. G. Infrared and Raman Characteristic Frequencies of Organic Molecules; Academic Press: Boston, 1991.
  25. Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds, 5th ed.; John Wiley& Sons: New York, 1997.
  26. Gonzalez-Baro, A. C.; Pis-Diez, R.; E. Piro, O. E.; Parajon-Costa, B. S. Polyhedron 2008, 27, 502. https://doi.org/10.1016/j.poly.2007.10.005
  27. Estrela dos Santos, J.; Dockal, E. R.; Cavalheiro, E. T. G. J. Therm. Anal. Cal. 2003, 79, 243.
  28. Zhang, L.; Zhang, W. P.; Wang, X. H.; Chen, L.; Shen, Q. F. Acta Cryst. 2008, E64, o512.
  29. Bader, R. F. W. Atoms in molecules A Quantum Theory; Oxford University: New York, 1990.
  30. Biegler-Konig, F.; Schonbohm, J.; Bayles, D. J. Comput. Chem. 2001, 22, 545. https://doi.org/10.1002/1096-987X(20010415)22:5<545::AID-JCC1027>3.0.CO;2-Y
  31. Grabowski, S. J. J. Mol. Struct. 2001, 562, 137. https://doi.org/10.1016/S0022-2860(00)00863-2
  32. Rozas, I.; Alkorta, I.; Elguero, J. J. Am. Chem. Soc. 2000, 122, 11154. https://doi.org/10.1021/ja0017864

Cited by

  1. Structural study, intermolecular interactions in view of X-ray and Hirshfeld surface analysis, DSC characterization, and electrical properties of bis-(4-benzylpyridinium) tetrabromozincate vol.23, pp.5, 2017, https://doi.org/10.1007/s11581-016-1926-4
  2. Synthesis, characterization, crystal structure and solution studies of a novel proton transfer (charge transfer) complex of 2,2'-dipyridylamine with 2,6-pyridine dicarboxylic acid vol.1089, pp.None, 2015, https://doi.org/10.1016/j.molstruc.2015.02.024
  3. Crystal structure studies and antimicrobial activities of transition metal complexes of pyridine-2,6-dicarboxylic acid and imidazole containing water clusters vol.69, pp.10, 2016, https://doi.org/10.1080/00958972.2016.1175558
  4. Synthesis, characterization, crystal structure and electrochemical studies of ionic iron(III) dipicolinato complex vol.1144, pp.None, 2013, https://doi.org/10.1016/j.molstruc.2017.05.044