DOI QR코드

DOI QR Code

Kinetic Study on Nucleophilic Substitution Reactions of 4-Chloro-2-nitrophenyl X-Substituted-benzoates with Cyclic Secondary Amines: Effect of Substituent X on Reactivity and Reaction Mechanism

  • Received : 2013.07.04
  • Accepted : 2013.07.15
  • Published : 2013.10.20

Abstract

Second-order rate constants ($k_N$) have been measured spectrophotometrically for the reactions of 4-chloro-2-nitrophenyl X-substituted-benzoates (1a-1h) with a series of cyclic secondary amines in 80 mol % $H_2O$/20 mol % DMSO at $25.0{\pm}0.1^{\circ}C$. The Hammett plot for the reactions of 1a-1h with piperidine consists of two intersecting straight lines, while the Yukawa-Tsuno plot exhibits an excellent linear correlation with ${\rho}_X $ = 1.25 and r = 0.58, indicating that the nonlinear Hammett plot is not due to a change in the rate-determining step (RDS) but is caused by ground-state stabilization through resonance interactions for substrates possessing an electron-withdrawing group in the benzoyl moiety. The Br${\o}$nsted-type plot for the reactions of 4-chloro-2-nitrophenyl benzoate (1d) with a series of cyclic secondary amines curves downward with ${\beta}_2$ = 0.85, ${\beta}_1$ = 0.24, and $pK_a{^o}$ = 10.5, implying that a change in RDS occurs from the $k_2$ step to the $k_1$ process as the $pK_a$ of the conjugate acid of the amine exceeds 10.5. Dissection of $k_N$ into the microscopic rate constants $k_1$ and $k_2/k_{-1}$ ratio associated with the reaction of 1d reveals that $k_2$ is dependent on the amine basicity, which is contrary to generally held views.

Keywords

References

  1. Page, M. I.; Williams, A. Organic and Bio-organic Mechanisms; Longman: Singapore, 1997; Chapt. 7.
  2. Lowry, T. H.; Richardson, K. S. Mechanism and Theory in Organic Chemistry, 3rd ed.; Harper Collins Publishers: New York, 1987; Chapt. 8.
  3. Jencks, W. P. Catalysis in Chemistry and Enzymology, McGraw Hill: New York, 1969; Chapt. 10.
  4. Castro, E. A. Pure Appl. Chem. 2009, 81, 685-696. https://doi.org/10.1351/PAC-CON-08-08-11
  5. Castro, E. A. Chem. Rev. 1999, 99, 3505-3524. https://doi.org/10.1021/cr990001d
  6. Jencks, W. P. Chem. Rev. 1985, 85, 511-527. https://doi.org/10.1021/cr00070a001
  7. Jencks, W. P. Chem. Soc. Rev. 1981, 10, 345-375. https://doi.org/10.1039/cs9811000345
  8. Jencks, W. P. Acc. Chem. Res. 1980, 13, 161-169. https://doi.org/10.1021/ar50150a001
  9. Castro, E. A.; Aliaga, M.; Campodonico, P. R.; Cepeda, M.; Contreras. R.; Santos, J. G. J. Org. Chem. 2009, 74, 9173-9179. https://doi.org/10.1021/jo902005y
  10. Castro, E. A.; Ramos, M.; Santos, J. G. J. Org. Chem. 2009, 74, 6374-6377. https://doi.org/10.1021/jo901137f
  11. Castro, E. A.; Ugarte, D.; Rojas, M. F.; Pavez, P.; Santos, J. G. Int. J. Chem. Kinet. 2011, 43, 708-714. https://doi.org/10.1002/kin.20605
  12. Castro, E. A.; Aliaga, M.; Santos, J. G. J. Org. Chem. 2005, 70, 2679-2685. https://doi.org/10.1021/jo047742l
  13. Castro, E. A.; Gazitua, M.; Santos, J. G. J. Org. Chem. 2005, 70, 8088-8092. https://doi.org/10.1021/jo051168b
  14. Sung, D. D.; Koo, I. S.; Yang, K.; Lee, I. Chem. Phys. Lett. 2006, 432, 426-430. https://doi.org/10.1016/j.cplett.2006.11.002
  15. Sung, D. D.; Koo, I. S.; Yang, K.; Lee, I. Chem. Phys. Lett. 2006, 426, 280-284. https://doi.org/10.1016/j.cplett.2006.06.015
  16. Oh, H. K.; Oh, J. Y.; Sung, D. D.; Lee, I. J. Org. Chem. 2005, 70, 5624-5629. https://doi.org/10.1021/jo050606b
  17. Oh, H. K.; Jin, Y. C.; Sung, D. D.; Lee, I. Org. Biomol. Chem. 2005, 3, 1240-1244. https://doi.org/10.1039/b500251f
  18. Menger, F. M.; Smith, J. H. J. Am. Chem. Soc. 1972, 94, 3824-3829. https://doi.org/10.1021/ja00766a027
  19. Llinas, A.; Page, M. I. Org. Biomol. Chem. 2004, 2, 651-654. https://doi.org/10.1039/b313900j
  20. Perreux, L.; Loupy, A.; Delmotte, M. Tetrahedron 2003, 59, 2185-2189. https://doi.org/10.1016/S0040-4020(03)00151-0
  21. Menger, F. M.; Brian, J.; Azov, V. A. Angew. Chem. Int. Ed. 2002, 41, 2581-2584. https://doi.org/10.1002/1521-3773(20020715)41:14<2581::AID-ANIE2581>3.0.CO;2-#
  22. Fife, T. H.; Chauffe, L. J. Org. Chem. 2000, 65, 3579-3586. https://doi.org/10.1021/jo9906835
  23. Gresser, M. J.; Jencks, W. P. J. Am. Chem. Soc. 1977, 99, 6970-6980. https://doi.org/10.1021/ja00463a033
  24. Castro, E. A.; Valdivia, J. L. J. Org. Chem. 1986, 51, 1668-1672. https://doi.org/10.1021/jo00360a007
  25. Castro, E. A.; Santander, C. L. J. Org. Chem. 1985, 50, 3595-3600. https://doi.org/10.1021/jo00219a029
  26. Castro, E. A.; Steinfort, G. B. J. Chem. Soc., Perkin Trans. 2 1983, 453-457.
  27. Castro, E. A.; Aguayo, R.; Bessolo, J.; Santos, J. G. J. Org. Chem. 2005, 70, 7788-7791. https://doi.org/10.1021/jo051052f
  28. Castro, E. A.; Aguayo, R.; Bessolo, J.; Santos, J. G. J. Org. Chem. 2005, 70, 3530-3536. https://doi.org/10.1021/jo050119w
  29. Castro, E. A.; Aguayo, R.; Santos, J. G. J. Org. Chem. 2004, 69, 5399-5404. https://doi.org/10.1021/jo049260f
  30. Castro, E. A.; Aguayo, R.; Santos, J. G. J. Org. Chem. 2003, 68, 8157-8161. https://doi.org/10.1021/jo0348120
  31. Oh, H. K.; Ku, M. H.; Lee, H. W.; Lee, I. J. Org. Chem. 2002, 67, 8995-8998. https://doi.org/10.1021/jo0264269
  32. Oh, H. K.; Ku, M. H.; Lee, H. W.; Lee, I. J. Org. Chem. 2002, 67, 3874-3877. https://doi.org/10.1021/jo025637a
  33. Oh, H. K.; Kim, S. K.; Lee, H. W.; Lee, I. New J. Chem. 2001, 25, 313-317. https://doi.org/10.1039/b006974o
  34. Um, I. H.; Bea, A. R. J. Org. Chem. 2012, 77, 5781-5787. https://doi.org/10.1021/jo300961y
  35. Um, I. H.; Kim, K. H.; Park, H. R.; Fujio, M.; Tsuno, Y. J. Org. Chem. 2004, 69, 3937-3942. https://doi.org/10.1021/jo049694a
  36. Um, I. H.; Jeon, S. E.; Seok, J. A. Chem. Eur. J. 2006, 12, 1237-1243. https://doi.org/10.1002/chem.200500647
  37. Um, I. H.; Lee, S. E.; Kwon, H. J. J. Org. Chem. 2002, 67, 8999-9005. https://doi.org/10.1021/jo0259360
  38. Um, I. H.; Seok, J. A.; Kim, H. T.; Bae, S. K. J. Org. Chem. 2003, 68, 7742-7746. https://doi.org/10.1021/jo034637n
  39. Um, I. H.; Hwang, S. J.; Yoon, S.; Jeon, S. E.; Bae, S. K. J. Org. Chem. 2008, 73, 7671-7677. https://doi.org/10.1021/jo801539w
  40. Um, I. H.; Akhtar, K.; Shin, Y. H.; Han, J. Y. J. Org. Chem. 2007, 72, 3823-3829. https://doi.org/10.1021/jo070171n
  41. Um, I. H.; Shin, Y. H.; Han, J. Y.; Mishima, M. J. Org. Chem. 2006, 71, 7715-7720. https://doi.org/10.1021/jo061308x
  42. Um, I. H.; Han, J. Y.; Shin, Y. H. J. Org. Chem. 2009, 74, 3073-3078. https://doi.org/10.1021/jo900219t
  43. Um, I. H.; Lee, J. Y.; Ko, S. H.; Bae, S. K. J. Org. Chem. 2006, 71, 5800-5803. https://doi.org/10.1021/jo0606958
  44. Carroll, F. A. Perspectives on Structure and Mechanism in Organic Chemistry, Brooks/Cole: New York, 1988; pp 371-386.
  45. Lowry, T. H.; Richardson, K. S. Mechanism and Theory in Organic Chemistry, 3rd ed.; Harper Collins Publishers: New York, 1987; pp 143-151.
  46. Um, I. H.; Hong, J. Y.; Seok, J. A. J. Org. Chem. 2005, 70, 1438-1444. https://doi.org/10.1021/jo048227q
  47. Um, I. H.; Chun, S. M.; Chae, O. M.; Fujio, M.; Tsuno, Y. J. Org. Chem. 2004, 69, 3166-3172. https://doi.org/10.1021/jo049812u
  48. Um, I. H.; Hong, J. Y.; Kim, J. J.; Chae, O. M.; Bae, S. K. J. Org. Chem. 2003, 68, 5180-5185. https://doi.org/10.1021/jo034190i
  49. Tsuno, Y.; Fujio, M. Adv. Phys. Org. Chem. 1999, 32, 267-385.
  50. Tsuno, Y.; Fujio, M. Chem. Soc. Rev. 1996, 25, 129-139. https://doi.org/10.1039/cs9962500129
  51. Yukawa, Y.; Tsuno, Y. Bull. Chem. Soc. Jpn. 1959, 32, 965-970. https://doi.org/10.1246/bcsj.32.965
  52. Kaljurand, I.; Lilleorg, R.; Murumaa, A.; Mishima, M.; Burk, P.; Koppel, I.; Koppel, I. A.; Leito, I. J. Phys. Org. Chem. 2013, 26, 171-181. https://doi.org/10.1002/poc.2956
  53. Basheer, A.; Mishima, M.; Marek, I. Org. Lett. 2011, 13, 4076-4079. https://doi.org/10.1021/ol201581c
  54. Than, S.; Badal, M.; Itoh, S.; Mishima, M. J. Phys. Org. Chem. 2010, 23, 411-417.
  55. Itoh, S.; Badal, M.; Mishima, M. J. Phys. Org. Chem. 2009, 113, 10075-10080. https://doi.org/10.1021/jp904159u
  56. Um, I. H.; Han, H. J.; Ahn, J. A.; Kang, S.; Buncel, E. J. Org. Chem. 2002, 67, 8475-8480. https://doi.org/10.1021/jo026339g
  57. Um, I. H.; Lee, J. Y.; Kim, H. T.; Bae, S. K. J. Org. Chem. 2004, 69, 2436-2441. https://doi.org/10.1021/jo035854r
  58. Um, I. H.; Kim, E. H.; Lee, J. Y. J. Org. Chem. 2009, 74, 1212-1217. https://doi.org/10.1021/jo802446y
  59. Um, I. H.; Kang, J. S.; Shin, Y. H.; Buncel, E. J. Org. Chem. 2013, 78, 490-497. https://doi.org/10.1021/jo302373y
  60. Um, I. H.; Shin, Y. H.; Park, J. E.; Kang, J. S.; Buncel, E. Chem. Eur. J. 2012, 18, 961-968. https://doi.org/10.1002/chem.201102404
  61. Um, I. H.; Han, J. Y.; Hwang, S. J. Chem. Eur. J. 2008, 14, 7324-7330. https://doi.org/10.1002/chem.200800553
  62. Um, I. H.; Park, J. E.; Shin, Y. H. Org. Biomol. Chem. 2007, 5, 3539-3543. https://doi.org/10.1039/b712427a
  63. Im, L. R.; Min, J. S.; Akhtar, K.; Um, I. H. Bull. Korean Chem. Soc. 2011, 32, 2117-2120. https://doi.org/10.5012/bkcs.2011.32.6.2117
  64. Jencks, W. P.; Regenstein, J. Handbook of Biochemistry, 2nd ed.; Sober, H. A., Ed.; Chemical Rubber Publishing Co.: Cleveland, OH, 1970; p J-195.
  65. Castro, E. A.; Cubillos, M.; Santos, J. G. J. Org. Chem. 1996, 61, 3501-3505. https://doi.org/10.1021/jo951726u
  66. Castro, E. A.; Saavedra, C.; Cubillos, M.; Santos, J. G.; Umana, M. I. J. Org. Chem. 1999, 64, 5401-5407. https://doi.org/10.1021/jo990084y
  67. Castro, E. A.; Garcia, P.; Leandro, L.; Quesieh, N.; Rebolledo, A.; Santos, J. G. J. Org. Chem. 2000, 65, 9047-9053. https://doi.org/10.1021/jo005587e
  68. Castro, E. A.; Leandro, L.; Quesieh, N.; Santos, J. G. J. Org. Chem. 2001, 66, 6130-6135. https://doi.org/10.1021/jo0157371
  69. Lowry, T. H.; Richardson, K. S. Mechanism and Theory in Organic Chemistry, 3rd ed.; Harper Collins Publishers: New York, 1987; pp 178-179.
  70. Cadogan, J. I. G. J. Chem. Soc. 1959, 2844-2846. https://doi.org/10.1039/jr9590002844
  71. Effenberger, F.; Muck, A. C.; Bessey, E. Chem. Ber. 1980, 113, 2086-2099. https://doi.org/10.1002/cber.19801130605

Cited by

  1. O/20 mol % DMSO: Effect of Medium on Reactivity and Reaction Mechanism vol.35, pp.4, 2014, https://doi.org/10.5012/bkcs.2014.35.4.1128
  2. Kinetic Study on Aminolysis of Y-Substituted-Phenyl X-Substituted-Benzoates: Effects of Substituents X and Y on Reactivity and Reaction Mechanism vol.35, pp.2, 2013, https://doi.org/10.5012/bkcs.2014.35.2.471
  3. Reactions of 4‐NITROPHENYL 5‐substituted Furan‐2‐carboxylates with R 2 NH / R 2 NH 2+ in 20 mol% DMSOhttps://doi.org/10.1002/bkcs.12296