DOI QR코드

DOI QR Code

Microwave-Assisted Solvent and Catalyst Free Synthesis of 2H-Pyrans

  • Received : 2013.06.05
  • Accepted : 2013.07.10
  • Published : 2013.10.20

Abstract

This paper describes a simple and efficient method involving domino Knovenegal/$6{\pi}$ electrocyclization for the preparation of a variety of 2H-pyrans using microwave irradiation under solvent- and catalyst-free conditions. This method offers the advantages of a green approach, high yields, and short reaction times. Sixteen compounds (9a-p) were obtained in good to excellent yields using the procedure.

Keywords

References

  1. Tang, Y.; Oppenheimer, J.; Song, Z.; You, L.; Zhang, X.; Hsung, R. P. Tetrahedron 2006, 62, 10785. https://doi.org/10.1016/j.tet.2006.08.054
  2. McKee, T. C.; Fuller, R. W.; Covington, C. D.; Cardellina II, J. H.; Gulakowski, R. J.; Krepps, B. L.; McMahon, J. B.; Boyd, M. R. J. Nat. Prod. 1996, 59, 754. https://doi.org/10.1021/np9603784
  3. McKee, T. C.; Covington, C. D.; Fuller, R. W.; Bokesch, H. R.; Young, S.; Cardellina II, J. H.; Kadushin, M. R.; Doel Soejarto, D.; Stevens, P. F.; Cragg, G. M.; Boyd, M. R. J. Nat. Prod. 1998, 61, 1252. https://doi.org/10.1021/np980140a
  4. Grundon, M. F. In The Alkaloids: Quinoline Alkaloids Related to Anthranilic Acid; Academic Press: London, 1988; 32, p 341.
  5. Ulubelen, A.; Mericli, A. H.; Mericli, F.; Kaya, U. Phytochemistry 1994, 35, 1600. https://doi.org/10.1016/S0031-9422(00)86905-8
  6. Wu, S.-J.; Chen, I. -S. Phytochemistry 1993, 34, 1659. https://doi.org/10.1016/S0031-9422(00)90870-7
  7. Campbell, W. E.; Davidowitz, B.; Jackson, G. E. Phytochemistry 1990, 29, 1303. https://doi.org/10.1016/0031-9422(90)85447-N
  8. Khalid, S. A.; Waterman, P. G. Phytochemistry 1981, 20, 2761. https://doi.org/10.1016/0031-9422(81)85282-X
  9. Hifnawy, M. S.; Vaquette, J.; Sevenet, T.; Pousset, J.-L.; Cave, A. Phytochemistry 1977, 16, 1035. https://doi.org/10.1016/S0031-9422(00)86717-5
  10. Stermitz, F. R.; Sharifi, I. A. Phytochemistry 1977, 16, 2003. https://doi.org/10.1016/0031-9422(77)80113-1
  11. Kulesza, A.; Ebetino, F. H.; Mishra, R. K.; Cross-Doersen, D.; Mazur, A. W. Org. Lett. 2003, 5, 1163. https://doi.org/10.1021/ol027281v
  12. Uher, M.; Konecny, V.; Rajniakove, O. Chem. Pap. 1994, 48, 282.
  13. Perez-Perez, M.; Balzarini, J.; Rozenski, J.; De-Clercq, E.; Herdewijn, P. Bioorg. Med. Chem. Lett. 1995, 5, 1115. https://doi.org/10.1016/0960-894X(95)00176-T
  14. Aytemir, M. D.; Calis, U.; Ozalp, M. Arch. Pharm. Pharm. Med. Chem. 2004, 337, 281. https://doi.org/10.1002/ardp.200200754
  15. Lima, V.; Silva, C. B.; Mafezoli, J.; Bezerra, M. M.; Moraes, M. O.; Mourao, G. S. M. M.; Silva, J. N.; M. C. F. Oliveira. Fitoterapia 2006, 77, 574. https://doi.org/10.1016/j.fitote.2006.09.005
  16. Lee, Y. R.; Choi, J. H.; Trinh, D. T. L.; Kim, N. W. Synthesis 2005,3026.
  17. Chen, I. S.; Wu, S. J.; Tsai, I. L. Wu, T. S.; Pezzuto, J. M.; Lu, M. C.; Chai, H.; Suh, N.; Teng, C. M. J. Nat. Prod. 1994, 57, 1206. https://doi.org/10.1021/np50111a003
  18. Yu, D.; Suzuki, M.; Xie, L.; Morris-Natschke, S. L.; Lee, K.-H. Med. Res. Rev. 2003, 23, 322. https://doi.org/10.1002/med.10034
  19. Chen, M.; Shao, C.-L.; Fu, X.-M.; Xu, R.-F.; Zheng, J.-J.; Zhao, D.-L.; She, Z.-G.; Wang, C.-Y. J. Nat. Prod. 2013, 76, 547. https://doi.org/10.1021/np300707x
  20. Lee, Y. R.; Kim, D. H.; Shim, J.-J.; Kim, S. K.; Park, J. H.; Cha, J. S. Bull. Korean Chem. Soc. 2002, 23, 998. https://doi.org/10.5012/bkcs.2002.23.7.998
  21. Lee, Y. R.; Choi, J. H.; Trinh, D. T. L.; Kim, N. W. Synthesis 2005, 18, 3026.
  22. Lee, Y. R.; Kim, D. H. Synthesis 2006, 4, 603.
  23. Lee, Y. R.; Wang, X.; Kim, Y. M.; Shim, J. J.; Kim, B. N.; Han, D. H. Bull. Korean Chem. Soc. 2007, 28, 1735. https://doi.org/10.5012/bkcs.2007.28.10.1735
  24. Jung, E. J.; Lee, Y. R.; Lee, H. J. Bull. Korean Chem. Soc. 2009, 30, 2833. https://doi.org/10.5012/bkcs.2009.30.11.2833
  25. Kurdyumov, A. V.; Lin, N.; Hsung, R. P.; Gullickson, G. C.; Cole, K. P.; Sydorenko, N.; Swidorski, J. J. Org. Lett. 2006, 8, 191. https://doi.org/10.1021/ol0523042
  26. Huber, C.; Moreau, J.; Batany, J.; Duboc, A.; Hurvois, J.-P.; Renaud, J.-L. Adv. Synth. Catal. 2008, 350, 40. https://doi.org/10.1002/adsc.200700375
  27. Moreau, J.; Hubert, C.; Batany, J.; Toupet, L.; Roisnel, T.; Hurvois, J.-P.; Renaud, J.-L. J. Org. Chem. 2009, 74, 8963. https://doi.org/10.1021/jo901238y
  28. Garcia, A.; Borchardt, D.; Chang, C.-E. A.; Marsella, M. J. J. Am. Chem. Soc. 2009, 131, 16640. https://doi.org/10.1021/ja907062v
  29. Martinez-Palou, R. Quimica en Microondas; CEM Publishing: Mattews, NC, 2006.
  30. Lidstom, P.; Tierney, J. P., Eds.; Microwave-Assisted Organic Synthesis; Blackwell Scientific, 2005.
  31. Kappe, C. O.; Stadler, A. Microwaves in Organic and Medicinal Chemistry; Wiley- VCH: Weinheim, 2005.
  32. Loupy, A., Eds.; Microwaves in Organic Synthesis; Wiley-VCH: Weinheim, 2002.
  33. Hayes, B. L. Microwave Synthesis: Chemistry at the Speed of Light; CEM Publishing: Matthews, NC, 2002.
  34. Martinez-Palou, R. Mol. Diversity 2006, 10, 435. https://doi.org/10.1007/s11030-006-9021-9
  35. Martinez-Palou, R. J. Mex. Chem. Soc. 2007, 51, 252.
  36. Varma, R. S. Green Chem. 1999, 1, 43. https://doi.org/10.1039/a808223e
  37. Dallinger, D.; Kappe, C. O. Chem. Rev. 2007, 107, 2563. https://doi.org/10.1021/cr0509410
  38. Vaddula, B. R.; Varma, R. S.; Leazer, J. Eur. J. Org. Chem. 2012, 6852.
  39. Soares, M. I. L.; Pinho e Melo, T. M. V. D. Tetrahedron Lett. 2008, 49, 4889. https://doi.org/10.1016/j.tetlet.2008.06.013
  40. Borkin, D.; Morzhina, E.; Datta, S.; Rudnitskaya, A.; Sood, A.; Torok, M.; Torok, B. Org. Biomol. Chem. 2011, 9, 1394. https://doi.org/10.1039/c0ob00638f
  41. Qu, G.; Han, S.; Zhang, Z.; Geng, M.; Xue, F. J. Braz. Chem. Soc. 2006, 17, 915. https://doi.org/10.1590/S0103-50532006000500015
  42. Figiel, P. J.; Kopylovich, M. N.; Lasri, J.; Guedes da Silva, M. F. C.; Frausto da Silvaa, J. J. R.; Pombeiro, A. J. L. Chem. Commun. 2010, 46, 2766. https://doi.org/10.1039/b922738e
  43. Gonzalez-Arellano, C.; Yoshida, K.; Luque, R.; Gai, P. L. Green Chem. 2010, 12, 1281. https://doi.org/10.1039/c003410j
  44. berg, V.; Norman, F.; Chorell, E.; Westermark, A.; Olofsson, A.; Sauer-Eriksson, A. E.; Almqvist, F. Org. Biomol. Chem. 2005, 3, 2817. https://doi.org/10.1039/b503294f
  45. Bose, A. K.; Manhas, M. S.; Ghosh, M.; Shah, M.; Raju, V. S.; Bari, S. S.; Newaz, S. N.; Banik, B. K.; Chaudhary, A. G.; Barakat, K. J. J. Org. Chem. 1991, 56, 6968. https://doi.org/10.1021/jo00025a004
  46. Leonor Reyes, L.; Corona, S.; Arroyo, G.; Delgado, F.; Miranda, R. Int. J. Mol. Sci. 2010, 11, 2576. https://doi.org/10.3390/ijms11062576
  47. Erdelyi, M.; Gogoll, A. Synthesis 2002, 11, 1592.
  48. Jung, E. J.; Park, B. H.; Lee, Y. R. Green Chem. 2010, 12, 2003. https://doi.org/10.1039/c0gc00265h

Cited by

  1. -Pyrans via a Cascade Reaction from Methyl Coumalate and Activated Methylene Nucleophiles vol.82, pp.10, 2017, https://doi.org/10.1021/acs.joc.7b00761
  2. ChemInform Abstract: Microwave-Assisted Solvent and Catalyst Free Synthesis of 2H-Pyrans vol.45, pp.9, 2014, https://doi.org/10.1002/chin.201409164
  3. Iron(III) Chloride Catalyzed Formation of 3,4-Dihydro-2H-pyrans from α-Alkylated 1,3-Dicarbonyls. Selective Synthesis of α- and β-Lapachone vol.18, pp.6, 2013, https://doi.org/10.1021/acs.orglett.6b00254
  4. Microwave Assisted Catalyst-free Synthesis of Bioactive Heterocycles vol.7, pp.None, 2013, https://doi.org/10.2174/2213335607666200226102010
  5. Oxa-[3+3] annulation of MBH-carbonates of propiolaldehydes with α-nitro/bromo ketones to access 2H-pyrans vol.56, pp.52, 2013, https://doi.org/10.1039/d0cc02947e