DOI QR코드

DOI QR Code

Deuterium Naturally Present in Solvent and Site-Specific Isotope Population of Deuterium-Enriched Solute

  • Hwang, Ryeo Yun (Analysis Research Division, Daegu Center, Korea Basic Science Institute) ;
  • Han, Oc Hee (Analysis Research Division, Daegu Center, Korea Basic Science Institute) ;
  • Lee, Juhee (Analysis Research Division, Daegu Center, Korea Basic Science Institute) ;
  • Kim, Eun Hee (Ochang Campus, Korea Basic Science Institute)
  • Received : 2013.07.08
  • Accepted : 2013.07.14
  • Published : 2013.10.20

Abstract

As the concentration of aqueous $CD_3OH$ solutions was decreased, the OD peaks in $^2H$ NMR spectra grew relative to the $CD_3$ peaks. Isotope impurity for OH groups of $CD_3OH$ and deuterium naturally present in water contributed to the OD peaks. Using these peak area data, the site-specific isotope populations of isotope enriched chemicals were measured. In addition, the method using both $^1H$ and $^2H$ NMR spectroscopy was demonstrated with neat $CD_3OH$ to measure the site-specific isotope populations. The results indicate that although it represents only ~0.015% of hydrogen isotopes, the deuterium naturally present in solvents cannot be ignored, especially when the concentration of deuterium-enriched solutes is varied. Proton/deuteron exchange between methyl and methyl/hydroxyl groups was confirmed to be negligible, while that among hydroxyl groups was detectable.

Keywords

References

  1. Zehl, M.; Rand, K. D.; Jensen, O. N.; Jørgensen, T. J. D. J. Am. Chem. Soc. 2008, 130, 17453-17459. https://doi.org/10.1021/ja805573h
  2. Tode, C.; Takeuchi, A.; Iwakawa, S.; Tatsumi, A.; Sugiura, M. Chem. Pharm. Bull. 2009, 57, 653-656. https://doi.org/10.1248/cpb.57.653
  3. Defoy, D.; Dansette, P. M.; Neugebauer, W.; Wagner, J. R.; Klarskov, K. Chem. Res. Toxicol. 2011, 24, 412-417. https://doi.org/10.1021/tx1003694
  4. Quint, P.; Ayala, I.; Busby, S. A.; Chalmers, M. J.; Griffin, P. R.; Rocca, J.; Nick, H. S.; Silverman, D. N. Biochemistry 2006, 45, 8209-8215. https://doi.org/10.1021/bi0606288
  5. Fanetti, S.; Ceppatelli, M.; Citroni, M.; Bini, R. J. Phys. Chem. C 2012, 116, 2108-2115. https://doi.org/10.1021/jp205563d
  6. Carmona, P.; Rodriguez-Casado, A.; Molina, M. Anal. Bioanal. Chem. 2009, 393, 1289-1295. https://doi.org/10.1007/s00216-008-2535-5
  7. Garczarek, F.; Gerwert, K. J. Am. Chem. Soc. 2006, 128, 28-29. https://doi.org/10.1021/ja056488r
  8. Hanashima, S.; Kato, K.; Yamaguchi, Y. Chem. Commun. 2011, 47, 10800-10802. https://doi.org/10.1039/c1cc13310a
  9. Tolstoy, P. M.; Guo, J.; Koeppe, B.; Golubev, N. S.; Denisov, G. S.; Smirnov, S. N.; Limbach, H. H. J. Phys. Chem. A 2010, 114, 10775-10782. https://doi.org/10.1021/jp1027146
  10. Smirnov, S. N.; Golubev, N. S.; Denisov, G. S.; Benedict, H.; Schah-Mohammedi, P.; Limbach, H.-H. J. Am. Chem. Soc. 1996, 118, 4094-4101. https://doi.org/10.1021/ja953445+
  11. Agarwal, V.; Diehl, A.; Skrynnikov, N.; Reif, B. J. Am. Chem. Soc. 2006, 128, 12620-12621. https://doi.org/10.1021/ja064379m
  12. Dziembowska, T.; Hansen, P. E.; Rozwadowski, Z. Prog. Nucl. Magn. Reson. Spectrosc. 2004, 45, 1-29. https://doi.org/10.1016/j.pnmrs.2004.04.001
  13. Ruschak, A. M.; Velyvis, A.; Kay, L. E. J. Biomol. NMR 2010, 48, 129-135. https://doi.org/10.1007/s10858-010-9449-1
  14. Han, O. H.; Han, K. S.; Shin, C. W.; Lee, J.; Kim, S. S.; Um, M. S.; Joh, H.-I.; Kim, S.-K.; Ha, H. Y. Angew. Chem. Int. Ed. 2012, 51, 3842-3845. https://doi.org/10.1002/anie.201108330
  15. Kim, I.; Han, O. H.; Chae, S. A.; Paik, Y.; Kwon, S. H.; Lee, K. S.; Sung, Y. E.; Kim, H. Angew. Chem. Int. Ed. 2011, 50, 2270-2274. https://doi.org/10.1002/anie.201005745
  16. Paik, Y.; Kim, S. S.; Han, O. H. Angew. Chem. Int. Ed. 2008, 47, 94-96. https://doi.org/10.1002/anie.200703190
  17. Limbach, H.-H. In NMR; Diehl, P., Fluck, E., Gunther, H., Kosfeld, R., Seelig, J., Eds.; Springer-Verlag: Berlin., 1991; Vol. 23, pp 63-164.
  18. Li, F.; Chen, Q.; Liu, C.-C.; Wu, Y.-H.; Liu, X.-P.; Yang, G.-F. Appl. Magn. Reson. 2012, 42, 169-177. https://doi.org/10.1007/s00723-011-0294-5
  19. Scrivanti, A.; Beghetto, V.; Campagna, E.; Zanato, M.; Matteoli, U. Organometallics 1998, 17, 630-635. https://doi.org/10.1021/om9705968
  20. Tang, Y.; Goger, M. J.; Raleigh, D. P. Biochemistry 2006, 45, 6940-6946. https://doi.org/10.1021/bi052484n
  21. Christy, A. A.; Egeberg, P. K. Analyst. 2005, 130, 738-744. https://doi.org/10.1039/b501895c
  22. Kosir, I. J.; Kocjan i , M.; Ogrinc, N.; Kidri , J. Anal. Chim. Acta. 2001, 429, 195-206. https://doi.org/10.1016/S0003-2670(00)01301-5
  23. Cordella, C.; Moussa, I.; Martel, A.-C.; Sbirrazzuoli, N.; Lizzani- Cuvelier, L. J. Agric. Food Chem. 2002, 50, 1751-1764. https://doi.org/10.1021/jf011096z
  24. Gerritzen, D.; Limbach, H. H. Ber. Bunsenges. Phys. Chem. 1981, 85, 527-535. https://doi.org/10.1002/bbpc.19810850702
  25. Briggs, J. M.; Farnell, L. F.; Randall, E. W. J. Chem. Soc., Chem. Commun. 1973, 70-71.
  26. Martin, M.; Martin, G. In NMR; Diehl, P., Fluck, E., Gunther, H., Kosfeld, R., Seelig, J., Eds.; Springer-Verlag: Berlin., 1991; Vol. 23, pp 1-61.
  27. Souda, R.; Kawanowa, H.; Kondo, M.; Gotoh, Y. J. Chem. Phys. 2003, 119, 6194-6200. https://doi.org/10.1063/1.1602055
  28. Heller, J.; Elgabarty, H.; Zhuang, B. L.; Sebastiani, D.; Hinderberger, D. J. Phys. Chem. B 2010, 114, 7429-7438. https://doi.org/10.1021/jp910335t
  29. Otten, R.; Chu, B.; Krewulak, K. D.; Vogel, H. J.; Mulder, F. A. A. J. Am. Chem. Soc. 2010, 132, 2952-2960. https://doi.org/10.1021/ja907706a
  30. Ruschak, A. M.; Kay, L. E. J. Biomol. NMR 2010, 46, 75-87. https://doi.org/10.1007/s10858-009-9376-1
  31. Chatterjee, J.; Rechenmacher, F.; Kessler, H. Angew. Chem. Int. Ed. 2013, 52, 254-269. https://doi.org/10.1002/anie.201205674
  32. Grabowski, J. J. Chem. Commun. 1997, 255-256.
  33. Lewis, W. C.; Norcross, B. E. J. Org. Chem. 1965, 30, 2866-2867. https://doi.org/10.1021/jo01019a526
  34. NMR and the Periodic Table; Harris, R. K., Mann, B. E., Eds.; Academic Press: London, 1978; p 9 and p 110.