DOI QR코드

DOI QR Code

Synthesis of a Novel Near-Infrared Fluorescent Dye: Applications for Fluorescence Imaging in Living Cells and Animals

  • Chen, Tongbin (Department of Chemistry, Hanshan Normal University) ;
  • Lai, Yijun (Department of Chemistry, Hanshan Normal University) ;
  • Huang, Suisheng (Department of Chemistry, Hanshan Normal University)
  • Received : 2013.04.23
  • Accepted : 2013.07.08
  • Published : 2013.10.20

Abstract

Fluorescence imaging is considered as one of the most powerful techniques for monitoring biomolecule activities in living systems. Near-infrared (NIR) light is advantageous for minimum photodamage, deep tissue penetration, and minimum background autofluorescence interference. Herein, we have developed a new NIR fluorescent dye, namely, RB-1, based on the Rhodamine B scaffold. RB-1 exhibits excellent photophysical properties including large absorption extinction coefficients, high fluorescence quantum yields, and high photostability. In particular, RB-1 displays both absorption and emission in the NIR region of the "biological window" (650-900 nm) for imaging in biological samples. RB-1 shows absorption maximum at 614 nm (500-725 nm) and emission maximum at 712 nm (650-825 nm) in ethanol, which is superior to those of traditional rhodamine B in the selected spectral region. Furthermore, applications of RB-1 for fluorescence imaging in living cells and small animals were investigated using confocal fluorescence microscopy and in vivo imaging system with a high signal-to-noise ratio (SNR = 10.1).

Keywords

References

  1. Stchur, P.; Cleveland, D.; Zhou, J.; Michel, R. G. Appl. Spectrosc. Rev. 2002, 37, 383. https://doi.org/10.1081/ASR-120016293
  2. Loudet, A.; Burgess, K. Chem. Rev. 2007, 107, 4891. https://doi.org/10.1021/cr078381n
  3. Gonçalves, M. S. T. Chem. Rev. 2008, 109, 190.
  4. Baumes, J. M.; Gassensmith, J. J.; Giblin, J.; Lee, J.-J.; White, A. G.; Culligan, W. J.; Leevy, W. M.; Kuno, M.; Smith, B. D. Nat. Chem. 2010, 2, 1025. https://doi.org/10.1038/nchem.871
  5. Ueno, T.; Nagano, T. Nat. Methods 2011, 8, 642. https://doi.org/10.1038/nmeth.1663
  6. Schaafsma, B. E.; Mieog, J. S. D.; Hutteman, M.; van der Vorst, J. R.; Kuppen, P. J. K.; Lowik, C. W. G. M.; Frangioni, J. V.; van de Velde, C. J. H.; Vahrmeijer, A. L. J. Surg. Oncol. 2011, 104, 323. https://doi.org/10.1002/jso.21943
  7. Nothdurft, R.; Sarder, P.; Bloch, S.; Culver, J.; Achilefu, S. J. Microsc. 2012, 247 , 202. https://doi.org/10.1111/j.1365-2818.2012.03634.x
  8. Kiyose, K.; Aizawa, S.; Sasaki, E.; Kojima, H.; Hanaoka, K.; Terai, T.; Urano, Y.; Nagano, T. Chem.-Eur. J. 2009, 15, 9191. https://doi.org/10.1002/chem.200900035
  9. Fabian, J.; Nakazumi, H.; Matsuoka, M. Chem. Rev. 1992, 92, 1197. https://doi.org/10.1021/cr00014a003
  10. Kobayashi, H.; Longmire, M. R.; Ogawa, M.; Choyke, P. L. Chem. Soc. Rev. 2011, 40, 4626. https://doi.org/10.1039/c1cs15077d
  11. Ntziachristos, V.; Bremer, C.; Weissleder, R. Eur. Radiol. 2003, 13, 195.
  12. Jensen, E. C. Anat. Rec. 2012, 295, 2031. https://doi.org/10.1002/ar.22602
  13. Sevick-Muraca, E. M.; Houston, J. P.; Gurfinkel, M. Curr. Opin. Chem. Biol. 2002, 6, 642. https://doi.org/10.1016/S1367-5931(02)00356-3
  14. Yuan, A.; Wu, J.; Tang, X.; Zhao, L.; Xu, F.; Hu, Y. J. Pharm. Sci. 2013, 102, 6. https://doi.org/10.1002/jps.23356
  15. Zheng, H.; Qian, Z. H.; Xu, L.; Yuan, F. F.; Lan, L. D.; Xu, J. G. Org. Lett. 2006, 8, 859. https://doi.org/10.1021/ol0529086
  16. Beija, M.; Afonso, C. A. M.; Martinho, J. M. G. Chem. Soc. Rev. 2009, 38, 2410. https://doi.org/10.1039/b901612k
  17. Jun, M. E.; Ahn, K. H. Org. Lett. 2010, 12, 2790. https://doi.org/10.1021/ol100905g
  18. Shi, W.; Sun, S.; Li, X.; Ma, H. Inorg. Chem. 2009, 49, 1206.
  19. Yang, Y. M.; Zhao, Q.; Feng, W.; Li, F. Y. Chem. Rev. 2013, 113,192. https://doi.org/10.1021/cr2004103
  20. Abugo, O. O.; Nair, R.; Lakowicz, J. R. Analy. Biochem. 2000, 279, 142. https://doi.org/10.1006/abio.2000.4486
  21. Yuan, L.; Lin, W.; Yang, Y.; Chen, H. J. Am. Chem. Soc. 2011, 134, 1200.

Cited by

  1. -Dihydroxanthene-Hemicyanine Fused Near-Infrared Fluorophores and Their First Water-Soluble and/or Bioconjugatable Analogues vol.12, pp.8, 2017, https://doi.org/10.1002/asia.201700176
  2. Straightforward Access to Water‐Soluble Unsymmetrical Sulfoxanthene Dyes: Application to the Preparation of Far‐Red Fluorescent Dyes with Large Stokes’ Shifts vol.20, pp.27, 2013, https://doi.org/10.1002/chem.201402306