DOI QR코드

DOI QR Code

Equilibrium Molecular Dynamics Simulation Study for Transport Properties of Noble Gases: The Green-Kubo Formula

  • Lee, Song Hi (Department of Chemistry, Kyungsung University)
  • Received : 2013.05.30
  • Accepted : 2013.07.09
  • Published : 2013.10.20

Abstract

This paper presents results for the calculation of transport properties of noble gases (He, Ne, Ar, Kr, and Xe) at 273.15 K and 1.00 atm using equilibrium molecular dynamics (EMD) simulations through a Lennard-Jones (LJ) intermolecular potential. We have utilized the revised Green-Kubo formulas for the stress (SAC) and the heat-flux auto-correlation (HFAC) functions to estimate the viscosities (${\eta}$) and thermal conductivities (${\lambda}$) of noble gases. The original Green-Kubo formula was employed for diffusion coefficients (D). The results for transport properties (D, ${\eta}$, and ${\lambda}$) of noble gases at 273.15 and 1.00 atm obtained from our EMD simulations are in a good agreement with the rigorous results of the kinetic theory and the experimental data. The radial distribution functions, mean square displacements, and velocity auto-correlation functions of noble gases are remarkably different from those of liquid argon at 94.4 K and 1.374 $g/cm^3$.

Keywords

References

  1. Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids; Oxford Univ. Press: Oxford, 1987; p 2.
  2. Alder, B. J.; Wainwright, T. E. J. Chem. Phys. 1957, 27, 1208. https://doi.org/10.1063/1.1743957
  3. Alder, B. J.; Wainwright, T. E. J. Chem. Phys. 1959, 31, 459. https://doi.org/10.1063/1.1730376
  4. Rahman, A. Phys. Rev. A 1964, 136, 405.
  5. Verlet, L. Phys. Rev. 1967, 159, 98. https://doi.org/10.1103/PhysRev.159.98
  6. Verlet, L. Phys. Rev. 1968, 165, 201. https://doi.org/10.1103/PhysRev.165.201
  7. Nicolas, J. J.; Gubbins, K. E.; Streett, W. B.; Tildesley, D. J. Mol. Phys. 1979, 37, 1429. https://doi.org/10.1080/00268977900101051
  8. Harp, G. D.; Berne, B. J. J. Chem. Phys. 1968, 49, 1249. https://doi.org/10.1063/1.1670216
  9. Berne, B. J.; Harp, G. D. Adv. Chem. Phys. 1970, 17, 63.
  10. Barker, J. A.; Watts, R. O. Chem. Phys. Lett. 1969, 3, 144. https://doi.org/10.1016/0009-2614(69)80119-3
  11. Rahman, A.; Stillinger, F. H. J. Chem. Phys. 1971, 55, 3336. https://doi.org/10.1063/1.1676585
  12. Lee, S. H.; Park, D. K.; Kang, D. B. Bull. Korean Chem. Soc. 2003, 24, 178. https://doi.org/10.5012/bkcs.2003.24.2.178
  13. Lee, S. H. Bull. Korean Chem. Soc. 2007, 28, 1371. https://doi.org/10.5012/bkcs.2007.28.8.1371
  14. Hirschfelder, J. O.; Curtiss, C. F.; Birds, R. B. Molecular Theory of Gases and Liquids; John Wiley: NY, 1954; pp 1110 & 1212.
  15. Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids; Oxford Univ. Press: Oxford, 1987; p 64.
  16. Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids; Oxford Univ. Press: Oxford, 1987; p 80.
  17. Gear, C. W. Numerical Initial Value Problems in Ordinary Differential Equation; Prentice-Hall: Englewood Cliffs, NJ, 1971.
  18. Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids; Oxford Univ. Press: Oxford, 1987; p 81.
  19. McQuarrie, D. A. Statistical Mechanics, 2nd ed; Happer & Row: NY, 1976; pp 364-365.
  20. Atkins, P. W.; de Paula, J. Physical Chemistry; Vol. 1 Thermodynamics and Kinetics, 8th ed; Oxford Univ Press: Oxford, 2006; p 452.

Cited by

  1. Molecular Dynamics Simulation Study for Shear Viscosity of Water at High Temperatures using SPC/E Water Model vol.35, pp.2, 2013, https://doi.org/10.5012/bkcs.2014.35.2.644
  2. Size Effect on Transport Properties of Gaseous Argon: A Molecular Dynamics Simulation Study vol.35, pp.5, 2013, https://doi.org/10.5012/bkcs.2014.35.5.1559
  3. Molecular Dynamics Simulation Study of Transport Properties of Diatomic Gases vol.35, pp.12, 2013, https://doi.org/10.5012/bkcs.2014.35.12.3527
  4. Overestimation of Viscosity by the Green-Kubo Method in a Dusty Plasma Experiment vol.118, pp.19, 2017, https://doi.org/10.1103/physrevlett.118.195001