• Title/Summary/Keyword: Green-Kubo formula

Search Result 6, Processing Time 0.023 seconds

Equilibrium Molecular Dynamics Simulation Study for Transport Properties of Noble Gases: The Green-Kubo Formula

  • Lee, Song Hi
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.10
    • /
    • pp.2931-2936
    • /
    • 2013
  • This paper presents results for the calculation of transport properties of noble gases (He, Ne, Ar, Kr, and Xe) at 273.15 K and 1.00 atm using equilibrium molecular dynamics (EMD) simulations through a Lennard-Jones (LJ) intermolecular potential. We have utilized the revised Green-Kubo formulas for the stress (SAC) and the heat-flux auto-correlation (HFAC) functions to estimate the viscosities (${\eta}$) and thermal conductivities (${\lambda}$) of noble gases. The original Green-Kubo formula was employed for diffusion coefficients (D). The results for transport properties (D, ${\eta}$, and ${\lambda}$) of noble gases at 273.15 and 1.00 atm obtained from our EMD simulations are in a good agreement with the rigorous results of the kinetic theory and the experimental data. The radial distribution functions, mean square displacements, and velocity auto-correlation functions of noble gases are remarkably different from those of liquid argon at 94.4 K and 1.374 $g/cm^3$.

Molecular Dynamics Simulation Study of the Transport Properties of Liquid Argon: The Green-Kubo Formula Revisited

  • Lee, Song-Hi
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.8
    • /
    • pp.1371-1374
    • /
    • 2007
  • The velocity auto-correlation (VAC) function of liquid argon in the Green-Kubo formula decays quickly within 5 ps to give a well-defined diffusion coefficient because the velocity is the property of each individual particle, whereas the stress (SAC) and heat-flux auto-correlation (HFAC) functions for shear viscosity and thermal conductivity have non-decaying, long-time tails because the stress and heat-flux appear as system properties. This problem can be overcome through N (number of particles)-fold improvement in the statistical accuracy, by considering the stress and the heat-flux of the system as properties of each particle and by deriving new Green-Kubo formulas for shear viscosity and thermal conductivity. The results obtained for the transport coefficients of liquid argon obtained are discussed.

Equilibrium and Non-equilibrium Molecular Dynamics Simulations of Thermal Transport Coefficients of Liquid Argon

  • Chang Bae Moon;Gyeong Keun Moon;Song Hi Lee
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.3
    • /
    • pp.309-315
    • /
    • 1991
  • The thermal transport coefficients-the self-diffusion coefficient, shear viscosity, and thermal conductivity-of liquid argon at 94.4 K and 1 atm are calculated by non-equilibrium molecular dynamics (NEMD) simulations of a Lennard-Jones potential and compared with those obtained from Green-Kubo relations using equilibrium molecular dynamics (EMD) simulations and with experimental data. The time-correlation functions-the velocity, pressure, and heat flux auto-correlation functions-of liquid argon obtained from the EMD simulations show well-behaved smooth curves which are not oscillating and decaying fast around 1.5 ps. The calculated self-diffusion coefficient from our NEMD simulation is found to be approximately 40% higher than the experimental result. The Lagrange extrapolated shear viscosity is in good agreement with the experimental result and the asymptotic formula of the calculated shear viscosities seems to be an exponential form rather than the square-root form predicted by other NEMD studies of shear viscosity. The agreement for thermal conductivity between the simulation results (NEMD and EMD) and the experimental result is within statistical error. In conclusion, through our NEMD and EMD simulations, the overall agreement is quite good, which means that the Green-Kubo relations and the NEMD algorithms of thermal transport coefficients for simple liquids are valid.

Temperature Dependence on Structure and Self-Diffusion of Water: A Molecular Dynamics Simulation Study using SPC/E Model

  • Lee, Song Hi
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.12
    • /
    • pp.3800-3804
    • /
    • 2013
  • In this study, molecular dynamics simulations of SPC/E (extended simple point charge) model have been carried out in the canonical NVT ensemble over the range of temperatures 300 to 550 K with and without Ewald summation. The quaternion method was used for the rotational motion of the rigid water molecule. Radial distribution functions $g_{OO}(r)$, $g_{OH}(r)$, and $g_{HH}(r)$ and self-diffusion coefficients D for SPC/E water were determined at 300-550 K and compared to experimental data. The temperature dependence on the structural and diffusion properties of SPC/E water was discussed.