DOI QR코드

DOI QR Code

Maximizing Biomass Productivity and $CO_2$ Biofixation of Microalga, Scenedesmus sp. by Using Sodium Hydroxide

  • Nayak, Manoranjan (CSIR - Institute of Minerals and Materials Technology) ;
  • Rath, Swagat S. (CSIR - Institute of Minerals and Materials Technology) ;
  • Thirunavoukkarasu, Manikkannan (CSIR - Institute of Minerals and Materials Technology) ;
  • Panda, Prasanna K. (CSIR - Institute of Minerals and Materials Technology) ;
  • Mishra, Barada K. (CSIR - Institute of Minerals and Materials Technology) ;
  • Mohanty, Rama C. (Utkal University)
  • Received : 2013.02.20
  • Accepted : 2013.05.26
  • Published : 2013.09.28

Abstract

A series of experiments were carried out with three native strains of microalgae to measure growth rates, biomass, and lipid productivities. Scenedesmus sp. IMMTCC-6 had better biomass growth rate and higher lipid production. The growth, lipid accumulation, and carbon dioxide ($CO_2$) consumption rate of Scenedesmus sp. IMMTCC-6 were tested under different NaOH concentrations in modified BBM. The algal strain showed the maximum specific growth rate (0.474/day), biomass productivity (110.9 mg $l^{-1}d^{-1}$), and $CO_2$ consumption rate (208.4 mg $l^{-1}d^{-1}$) with an NaOH concentration of 0.005 M on the $8^{th}$ day of cultivation. These values were 2.03-, 6.89-, and 6.88-fold more than the algal cultures grown in control conditions (having no NaOH and $CO_2$). The $CO_2$ fixing efficiency of the microalga with other alternative carbon sources like $Na_2CO_3$ and $NaHCO_3$ was also investigated and compared. The optimized experimental parameters at shake-flask scale were implemented for scaling up the process in a self-engineered photobioreactor. A significant increase in lipid accumulation (14.23% to 31.74%) by the algal strain from the logarithmic to stationary phases was obtained. The algal lipids were mainly composed of $C_{16}/C_{18}$ fatty acids, and are desirable for biodiesel production. The study suggests that microalga Scenedesmus sp. IMMTCC-6 is an efficient strain for biodiesel production and $CO_2$ biofixation using stripping solution of NaOH in a cyclic process.

Keywords

References

  1. Bligh EG, Dyer WJ. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37: 911-917. https://doi.org/10.1139/o59-099
  2. Chai X, Zhao X, Baoying W. 2012. Biofixation of carbon dioxide by Chlorococcum sp. in a photobioreactor with polytetrafluoroethene membrane sparger. Afr. J. Biotechnol. 11: 7445-7453.
  3. Chinnasamy S, Bhatnagar A, Hunt RW, Das KC. 2010. Microalgae cultivation in wastewater dominated by carpet mill effluents for biofuel applications. Bioresour. Technol. 101: 3097-3105. https://doi.org/10.1016/j.biortech.2009.12.026
  4. Chiu SY, Kao CY, Chen CH, Kuan TC, Ong SC, Lin CS. 2008. Reduction of $CO_2$ by a high-density culture of Chlorella sp. in a semicontinuous photobioreactor. Bioresour. Technol. 99: 3389-3396. https://doi.org/10.1016/j.biortech.2007.08.013
  5. Chiu SY, Kao CY, Tsai MT, Ong SC, Chen CH, Lin CS. 2009. Lipid accumulation and $CO_2$ utilization of Nannochloropsis oculata in response to $CO_2$ aeration. Bioresour. Technol. 100: 833-838. https://doi.org/10.1016/j.biortech.2008.06.061
  6. Colman B, Rotatore C. 1995. Photosynthetic inorganic carbon uptake and accumulation in two marine diatoms. Plant Cell Environ. 18: 919-924. https://doi.org/10.1111/j.1365-3040.1995.tb00601.x
  7. Costa JAV, deMorais MG. 2011. The role of biochemical engineering in the production of biofuels from microalgae. Bioresour. Technol. 102: 2-9. https://doi.org/10.1016/j.biortech.2010.06.014
  8. Damiani MC, Popovich CA, Constenla D, Leonardi PI. 2010. Lipid analysis in Haematococcus pluvialis to assess its potential use as a biodiesel feedstock. Bioresour. Technol. 101: 3801-3807. https://doi.org/10.1016/j.biortech.2009.12.136
  9. Den W, Wang CC, Yang S. 2010. Preliminary investigation of an integrated photobioreactor system for microalgal $CO_2$ fixation. Chem. Eng. Trans. 21: 193-198.
  10. Emma Huertas I, Colman B, Espie GS, Lubian LM. 2000. Active transport of $CO_2$ by three species of marine microalgae. J. Phycol. 36: 314-320.
  11. EN 14214. 2003. Automotive fuels-fatty acid methyl esters (FAME) for diesel engines - requirements and test methods.
  12. Gouveia L, Oliveira AC. 2009. Microalgae as a raw material for biofuels production. J. Ind. Microbiol. Biotechnol. 36: 269-274. https://doi.org/10.1007/s10295-008-0495-6
  13. Grobbelaar JU. 2004. Algal nutrition: mineral nutrition, pp. 97-115. In Richmond A (ed.). Handbook of Microalgal Culture: Biotechnology and Applied Phycology. Blackwell Publishing Ltd, Oxford.
  14. Harrington KJ. 1986. Chemical and physical properties of vegetable oil esters and their effect on diesel fuel performance. Biomass 9: 1-17. https://doi.org/10.1016/0144-4565(86)90008-9
  15. Ho S, Chen W, Chang J. 2010. Scenedesmus obliquus CNW-N as a potential candidate for $CO_2$ mitigation and biodiesel production. Bioresour. Technol. 101: 8725-8730. https://doi.org/10.1016/j.biortech.2010.06.112
  16. Jacob-Lopes E, Lacerda LMCF, Franco TT. 2008. Biomass production and carbon dioxide fixation by Aphanothece microscopica Nageli in a bubble column photobioreactor. Biochem. Eng. J. 40: 27-34. https://doi.org/10.1016/j.bej.2007.11.013
  17. Kajiwara S, Yamada H, Ohkuni N, Ohtaguchi K. 1997. Design of the bioreactor for carbon dioxide fixation by Synechococcus PCC7942. Energy Convers. Manage. 38: 529-532. https://doi.org/10.1016/S0196-8904(96)00322-6
  18. Knothe G. 2008. "Designer" biodiesel: optimizing fatty ester composition to improve fuel properties. Energy Fuels 22: 1358-1364. https://doi.org/10.1021/ef700639e
  19. Korre A, Nie ZG, Durucan S. 2010. Life cycle modelling of fossil fuel power generation with post-combustion $CO_2$ capture. Int. J. Greenhouse Gas Contr. 4: 289-300. https://doi.org/10.1016/j.ijggc.2009.08.005
  20. Krohn BJ, McNeff CV, Yan B, Nowlan D. 2011. Production of algae based biodiesel using the continuous catalytic Mcgyan process. Bioresour. Technol. 102: 94-100 https://doi.org/10.1016/j.biortech.2010.05.035
  21. Lee JY, Yoo C, Jun SY, Ahn CY, Oh HM. 2010. Comparison of several methods for effective lipid extraction from microalgae. Bioresour. Technol. 101: 75-77. https://doi.org/10.1016/j.biortech.2009.03.058
  22. Li Y, Horsman M, Wang B, Wu N, Lan CQ. 2008. Effect of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Appl. Microbiol. Biotechnol. 81: 629-636. https://doi.org/10.1007/s00253-008-1681-1
  23. Li ZS, Yuan HL, Yang JS, Li BZ. 2011. Optimization of the biomass production of oil algae Chlorella minutissima UTEX2341. Bioresour. Technol. 102: 9128-9134. https://doi.org/10.1016/j.biortech.2011.07.004
  24. Miao XL, Li RX, Yao HY. 2009. Effective acid-catalyzed transesterification for biodiesel production. Energy Convers. Manage. 50: 2680-2684. https://doi.org/10.1016/j.enconman.2009.06.021
  25. Nakamura T, Senior C, Olaizola M, Masutani S. 2001. Capture and sequestration of stationary combustion systems by photosynthetic microalgae. Proceedings of the First National Conference on Carbon Sequestration. Department of Energy - National Energy Technology Laboratory, USA.
  26. Nayak M, Jena J, Bhakta S, Rath SS, Sarika C, Rao BVSK, et al. 2011. Screening of fresh water microalgae from eastern region of India for sustainable biodiesel production. Int. J. Green Energy 8: 669-683. https://doi.org/10.1080/15435075.2011.588764
  27. Putt R, Singh M, Chinnasamy S, Das KC. 2011. An efficient system for carbonation of high-rate algae pond water to enhance $CO_2$ mass transfer. Bioresour. Technol. 102: 3240-3245. https://doi.org/10.1016/j.biortech.2010.11.029
  28. Rahaman MSA, Cheng LH, Xu XH, Zhang L, Chen HL. 2011. A review of carbon dioxide capture and utilization by membrane integrated microalgal cultivation processes. Renew. Sustain. Energy Rev. 15: 4002-4012. https://doi.org/10.1016/j.rser.2011.07.031
  29. Richmond A, Becker EW. 1986. Technological aspects of mass cultivation - A general outline, pp. 245-263. In Richmond A (ed.). CRC Handbook of Microalgal Mass Culture. CRC Press, Inc. Boca Raton, Florida.
  30. Rodolfi L, Zittelli GC, Bassi N, Padovani G, Biondi N, Bonini G, et al. 2009. Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol. Bioeng. 102: 100-112. https://doi.org/10.1002/bit.22033
  31. Sayre R. 2010. Microalgae: the potential for carbon capture. Bioscience 60: 722-727. https://doi.org/10.1525/bio.2010.60.9.9
  32. Smith RG, Bidwell RGS. 1989. Mechanism of photosynthetic carbon dioxide uptake by the red macroalga, Chondrus crispus. Plant Physiol. 89: 93-99. https://doi.org/10.1104/pp.89.1.93
  33. Stein JR. 1973. Handbook of Phycological Methods: Culture Methods and Growth Measurements. Cambridge University Press, Cambridge, UK.
  34. Takagi M, Karseno YT. 2006. Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells. J. Biosci. Bioeng. 101: 223-226. https://doi.org/10.1263/jbb.101.223
  35. Wang B, Li Y, Wu N, Lan C. 2008. $CO_2$ bio-mitigation using microalgae. Appl. Microbiol. Biotechnol. 79: 707-718. https://doi.org/10.1007/s00253-008-1518-y
  36. Zhao B, Zhang Y, Xiong K, Zhang Z, Hao X, Liu T. 2011. Effect of cultivation mode on microalgal growth and $CO_2$ fixation. Chem. Eng. Res. Des. 89: 1758-1762. https://doi.org/10.1016/j.cherd.2011.02.018

Cited by

  1. Sequestration of High Carbon Dioxide Concentration for Induction of Lipids in Microalgae for Biodiesel Production vol.15, pp.8, 2013, https://doi.org/10.3923/jas.2015.1045.1058
  2. Optimization of Process Parameters for CO2 Fixation from Bicarbonate Source by a Microalgae vol.8, pp.6, 2013, https://doi.org/10.3923/jest.2015.289.299
  3. Sustainable valorization of flue gas CO2and wastewater for the production of microalgal biomass as a biofuel feedstock in closed and open reactor systems vol.6, pp.94, 2013, https://doi.org/10.1039/c6ra17899e
  4. Cultivation of freshwater microalga <i>Scenedesmus</i> sp. using a low-cost inorganic fertilizer for enhanced biomass and lipid yield vol.62, pp.1, 2013, https://doi.org/10.2323/jgam.62.7
  5. Cyanobacterial CO2 biofixation in batch and semi‐continuous cultivation, using hydrophobic and hydrophilic hollow fiber membrane photobioreactors vol.6, pp.2, 2016, https://doi.org/10.1002/ghg.1542
  6. Effect of daytime CO2supplement on productivity and biochemical composition ofScenedesmus armatusunder outdoor cultivation vol.46, pp.3, 2013, https://doi.org/10.1080/10826068.2015.1015569
  7. Ammonium Bicarbonate as Nutrient Substitute for Improving Biomass Productivity of Chlorella variabilis vol.39, pp.9, 2016, https://doi.org/10.1002/ceat.201500491
  8. An open outdoor algal growth system of improved productivity for biofuel production vol.94, pp.1, 2013, https://doi.org/10.1002/jctb.5768
  9. Large-Scale Cultivation of Spirulina for Biological CO 2 Mitigation in Open Raceway Ponds Using Purified CO 2 From a Coal Chemical Flue Gas vol.7, pp.None, 2013, https://doi.org/10.3389/fbioe.2019.00441
  10. Microalgal-Based Carbon Sequestration by Converting LNG-Fired Waste CO2 into Red Gold Astaxanthin: The Potential Applicability vol.12, pp.9, 2013, https://doi.org/10.3390/en12091718
  11. Bio-fixation of flue gas from thermal power plants with algal biomass: Overview and research perspectives vol.245, pp.None, 2013, https://doi.org/10.1016/j.jenvman.2019.01.043
  12. Start-up of a nutrient removal system using Scenedesmus vacuolatus and Chlorella vulgaris biofilms vol.6, pp.None, 2013, https://doi.org/10.1186/s40643-019-0259-3
  13. Using polyethylene glycol to promote Nannochloropsis oceanica growth with 15 vol% CO2 vol.720, pp.None, 2020, https://doi.org/10.1016/j.scitotenv.2020.137598