DOI QR코드

DOI QR Code

Growth and Fermentation Characteristics of Saccharomyces cerevisiae NK28 Isolated from Kiwi Fruit

  • Lee, Jong-Sub (Department of Food Science and Biotechnology, Kangwon National University) ;
  • Park, Eun-Hee (Department of Food Science and Biotechnology, Kangwon National University) ;
  • Kim, Jung-Wan (Division of Life Sciences, University of Incheon) ;
  • Yeo, Soo-Hwan (Fermented Food Science Division, National Academy of Agricultural Science, RDA) ;
  • Kim, Myoung-Dong (Department of Food Science and Biotechnology, Kangwon National University)
  • Received : 2013.07.18
  • Accepted : 2013.07.24
  • Published : 2013.09.28

Abstract

The influences of glucose concentration, initial medium acidity (pH), and temperature on the growth and ethanol production of Saccharomyces cerevisiae NK28, which was isolated from kiwi fruit, were examined in shake flask cultures. The optimal glucose concentration, initial medium pH, and temperature for ethanol production were 200 g/l, pH 6.0, and $35^{\circ}C$, respectively. Under this growth condition, S. cerevisiae NK28 produced $98.9{\pm}5.67$ g/l ethanol in 24 h with a volumetric ethanol production rate of $4.12{\pm}0.24g/l{\cdot}h$. S. cerevisiae NK28 was more tolerant to heat and ethanol than laboratory strain S. cerevisiae BY4742, and its tolerance to ethanol and fermentation inhibitors was comparable to that of an ethanologen, S. cerevisiae D5A.

Keywords

References

  1. Alfenore S, Cameleyre X, Benbadis L, Bideaux C, Uribelarrea JL, Goma G, et al. 2004. Aeration strategy: a need for very high ethanol performance in Saccharomyces cerevisiae fed-batch process. Appl. Microbiol. Biotechnol. 63: 537-542. https://doi.org/10.1007/s00253-003-1393-5
  2. Allen SA, Clark W, McCaffery JM, Cai Z, Lanctot A, Slininger PJ, et al. 2010. Furfural induces reactive oxygen species accumulation and cellular damage in Saccharomyces cerevisiae. Biotechnol. Biofuels 3: 2. https://doi.org/10.1186/1754-6834-3-2
  3. Almeida JRM, Modig T, Petersson A, Hahn-Hagerdal B, Liden G, Gorwa-Grauslund MF. 2007. Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J. Chem. Technol. Biotechnol. 82: 340-349. https://doi.org/10.1002/jctb.1676
  4. Alper H, Moxley J, Nevoigt E, Fink GR, Stephanopoulos G. 2006. Engineering yeast transcription machinery for improved ethanol tolerance and production. Science 314: 1565-1568. https://doi.org/10.1126/science.1131969
  5. Auesukaree C, Koedrith P, Saenpayavai P, Asvarak T, Benjaphokee S, Sugiyama M, et al. 2012. Characterization and gene expression profiles of thermotolerant Saccharomyces cerevisiae isolates from Thai fruits. J. Biosci. Bioeng. 114: 144-149. https://doi.org/10.1016/j.jbiosc.2012.03.012
  6. Boneau CA. 1960. The effects of violations of assumptions underlying the t test. Psychol. Bull. 57: 49-64. https://doi.org/10.1037/h0041412
  7. Borole A P, M ielenz JR, V ish nivetskaya T A, H amilton CY. 2009. Controlling accumulation of fermentation inhibitors in biorefinery recycle water using microbial fuel cells. Biotechnol. Biofuels 2: 7. https://doi.org/10.1186/1754-6834-2-7
  8. Cantarella M, Cantarella L, Gallifuoco A, Spera A, Alfani F. 2004. Effect of inhibitors released during steam-explosion treatment of poplar wood on subsequent enzymatic hydrolysis and SSF. Biotechnol. Prog. 20: 200-206.
  9. Chandel AK, Narasu ML, Chandrasekhar G, Manikyam A, Rao LV. 2009. Use of Saccharum spontaneum (wild sugarcane) as biomaterial for cell immobilization and modulated ethanol production by thermotolerant Saccharomyces cerevisiae $VS_{3}$. Bioresour. Technol. 100: 2404-2410. https://doi.org/10.1016/j.biortech.2008.11.014
  10. D'amore T, Stewart GG. 1987. Ethanol tolerance of yeast. Enzyme Microb. Technol. 9: 322-330. https://doi.org/10.1016/0141-0229(87)90053-6
  11. Endo A, Nakamura T, Ando A, Tokuyasu K, Shima J. 2008. Genome-wide screening of the genes required for tolerance to vanillin, which is a potential inhibitor of bioethanol fermentation, in Saccharomyces cerevisiae. Biotechnol. Biofuels 1: 3. https://doi.org/10.1186/1754-6834-1-3
  12. Gao R, Yuan X, Li J, Wang X, Cheng X, Zhu W, Cui Z. 2012. Performance and spatial succession of a full-scale anaerobic plant treating high-concentration cassava bioethanol wastewater. J. Microbiol. Biotechnol. 22: 1148-1154. https://doi.org/10.4014/jmb.1202.02015
  13. Gomathi D, Muthulakshmi C, Kumar DG, Ravikumar G, Kalaiselvi M, Uma C. 2012. Production of bio-ethanol from pretreated agricultural byproduct using enzymatic hydrolysis and simultaneous saccharification. Microbiology 81: 201-207. https://doi.org/10.1134/S0026261712010079
  14. Haque M A, Nath Barman D, Kang TH, K im MK, K im J, Kim H, et al. 2012. Effect of dilute alkali on structural features and enzymatic hydrolysis of barley straw (Hordeum vulgare) at boiling temperature with low residence time. J. Microbiol. Biotechnol. 22: 1681-1691. https://doi.org/10.4014/jmb.1206.06058
  15. Hawkins GM, Doran-Peterson J. 2011. A strain of Saccharomyces cerevisiae evolved for fermentation of lignocellulosic biomass displays improved growth and fermentative ability in high solids concentrations and in the presence of inhibitory compounds. Biotechnol. Biofuels 4: 49. https://doi.org/10.1186/1754-6834-4-49
  16. Heer D, Sauer U. 2008. Identification of furfural as a key toxin in lignocellulosic hydrolysates and evolution of a tolerant yeast strain. Microb. Biotechnol. 1: 497-506. https://doi.org/10.1111/j.1751-7915.2008.00050.x
  17. Horvath IS, Taherzadeh MJ, Niklasson C, Liden G. 2001. Effects of furfural on anaerobic continuous cultivation of Saccharomyces cerevisiae. Biotechnol. Bioeng. 75: 540-549. https://doi.org/10.1002/bit.10090
  18. Keating JD, Panganiban C, Mansfield SD. 2006. Tolerance and adaptation of ethanologenic yeasts to lignocellulosic inhibitory compounds. Biotechnol. Bioeng. 93: 1196-1206. https://doi.org/10.1002/bit.20838
  19. Koppram R, Albers E, Olsson L. 2012. Evolutionary engineering strategies to enhance tolerance of xylose utilizing recombinant yeast to inhibitors derived from spruce biomass. Biotechnol. Biofuels 5: 32. https://doi.org/10.1186/1754-6834-5-32
  20. Kumar C, Sharma R, Bachhawat AK. 2003. Investigations into the polymorphisms at the ECM38 locus of two widely used Saccharomyces cerevisiae S288C strains, YPH499 and BY4742. Yeast 20: 857-863. https://doi.org/10.1002/yea.1012
  21. Larsson S, Reimann A, Nilvebrant NO, Jonsson LJ. 1999. Comparison of different methods for the detoxification of lignocellulose hydrolyzates of spruce. Appl. Biochem. Biotechnol. 77: 91-103. https://doi.org/10.1385/ABAB:77:1-3:91
  22. Larsson S, Palmqvist E, Hahn-Hagerdal B, Tengborg C, Stenberg K, Zacchi G, et al. 1999. The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enzyme Microb. Technol. 24: 151-159. https://doi.org/10.1016/S0141-0229(98)00101-X
  23. Larsson S, Quintana-Sainz A, Reimann A, Nilvebrant NO, Jonsson LJ. 2000. Influence of lignocellulose-derived aromatic compounds on oxygen-limited growth and ethanolic fermentation by Saccharomyces cerevisiae. Appl. Biochem. Biotechnol. 84-86: 617-632. https://doi.org/10.1385/ABAB:84-86:1-9:617
  24. Lee HJ, Ahn SJ, Seo YJ, Lee JW. 2013. A feasibility study on the multistage process for the oxalic acid pretreatment of a lignocellulosic biomass using electrodialysis. Bioresour. Technol. 130: 211-217. https://doi.org/10.1016/j.biortech.2012.12.061
  25. Lee YJ, Choi YR, Lee SY, Park JT, Shim JH, Park KH, et al. 2011. Screening wild yeast strains for alcohol fermentation from various fruits. Mycobiology 39: 33-39. https://doi.org/10.4489/MYCO.2011.39.1.033
  26. Palmqvist E, Grage H, Meinander NQ, Hahn-Hagerdal B. 1999. Main and interaction effects of acetic acid, furfural, and p-hydroxybenzoic acid on growth and ethanol productivity of yeasts. Biotechnol. Bioeng. 63: 46-55. https://doi.org/10.1002/(SICI)1097-0290(19990405)63:1<46::AID-BIT5>3.0.CO;2-J
  27. Rodrussamee N, Lertwattanasakul N, Hirata K, Suprayogi, Limtong S, Kosaka T, Yamada M. 2011. Growth and ethanol fermentation ability on hexose and pentose sugars and glucose effect under various conditions in thermotolerant yeast Kluyveromyces marxianus. Appl. Microbiol. Biotechnol. 90: 1573-1586. https://doi.org/10.1007/s00253-011-3218-2
  28. Sims REH, Mabee W, Saddler JN, Taylor M. 2010. An overview of second generation biofuel technologies. Bioresour. Technol. 101: 1570-1580. https://doi.org/10.1016/j.biortech.2009.11.046
  29. Suryawati L, Wilkins MR, Bellmer DD, Huhnke RL, Maness NO, Banat IM. 2008. Simultaneous saccharification and fermentation of Kanlow switchgrass pretreated by hydrothermolysis using Kluyveromyces marxianus IMB4. Biotechnol. Bioeng. 101: 894-902. https://doi.org/10.1002/bit.21965
  30. Wahlbom CF, Hahn-Hagerdal B. 2002. Furfural, 5-hydroxymethyl furfural, and acetoin act as external electron acceptors during anaerobic fermentation of xylose in recombinant Saccharomyces cerevisiae. Biotechnol. Bioeng. 78: 172-178. https://doi.org/10.1002/bit.10188
  31. Wu H, Mora-Pale M, Miao J, Doherty TV, Linhardt RJ, Dordick JS. 2011. Facile pretreatment of lignocellulosic biomass at high loadings in room temperature ionic liquids. Biotechnol. Bioeng. 108: 2865-2875. https://doi.org/10.1002/bit.23266
  32. Wu M, Wang M, Liu J, Huo H. 2008. Assessment of potential life-cycle energy and greenhouse gas emission effects from using corn-based butanol as a transportation fuel. Biotechnol. Prog. 24: 1204-1214. https://doi.org/10.1002/btpr.71
  33. Yanase H, Miyawaki H, Sakurai M, Kawakami A, Matsumoto M, Haga K, et al. 2012. Ethanol production from wood hydrolysate using genetically engineered Zymomonas mobilis. Appl. Microbiol. Biotechnol. 94: 1667-1678. https://doi.org/10.1007/s00253-012-4094-0
  34. Zh ang Q, F u Y, W ang Y, H an J , Lv J , Wang S . 2012. Improved ethanol production of a newly isolated thermotolerant Saccharomyces cerevisiae strain after high-energy-pulse-electron beam. J. Appl. Microbiol. 112: 280-288. https://doi.org/10.1111/j.1365-2672.2011.05209.x

Cited by

  1. Yeasts from peat in a tropical peat swamp forest in Thailand and their ability to produce ethanol, indole-3-acetic acid and extracellular enzymes vol.15, pp.7, 2013, https://doi.org/10.1007/s11557-016-1205-9
  2. 누룩으로부터 맥아당 이용능과 에탄올 생산성이 우수한 효모의 분리와 특성 vol.44, pp.1, 2016, https://doi.org/10.4014/mbl.1510.10008
  3. Single yeast cell nanomotions correlate with cellular activity vol.6, pp.26, 2013, https://doi.org/10.1126/sciadv.aba3139
  4. Kinetic modeling of batch bioethanol production from CCN-51 Cocoa Mucilage vol.128, pp.None, 2013, https://doi.org/10.1016/j.jtice.2021.08.040