DOI QR코드

DOI QR Code

Engineering the Cellular Protein Secretory Pathway for Enhancement of Recombinant Tissue Plasminogen Activator Expression in Chinese Hamster Ovary Cells: Effects of CERT and XBP1s Genes

  • Received : 2013.02.18
  • Accepted : 2013.04.05
  • Published : 2013.08.28

Abstract

Cell line development is the most critical and also the most time-consuming step in the production of recombinant therapeutic proteins. In this regard, a variety of vector and cell engineering strategies have been developed for generating high-producing mammalian cells; however, the cell line engineering approach seems to show various results on different recombinant protein producer cells. In order to improve the secretory capacity of a recombinant tissue plasminogen activator (t-PA)-producing Chinese hamster ovary (CHO) cell line, we developed cell line engineering approaches based on the ceramide transfer protein (CERT) and X-box binding protein 1 (XBP1) genes. For this purpose, CERT S132A, a mutant form of CERT that is resistant to phosphorylation, and XBP1s were overexpressed in a recombinant t-PA-producing CHO cell line. Overexpression of CERT S132A increased the specific productivity of t-PA-producing CHO cells up to 35%. In contrast, the heterologous expression of XBP1s did not affect the t-PA expression rate. Our results suggest that CERT-S132A-based secretion engineering could be an effective strategy for enhancing recombinant t-PA production in CHO cells.

Keywords

References

  1. Bard F, Malhotra V. 2006. The formation of TGN-to-plasmamembrane transport carriers. Annu. Rev. Cell Dev. Biol. 22: 439-455. https://doi.org/10.1146/annurev.cellbio.21.012704.133126
  2. Becker E, Florin L, Pfizenmaier K, Kaufmann H. 2008. An XBP-1 dependent bottle-neck in production of IgG subtype antibodies in chemically defined serum-free Chinese hamster ovary (CHO) fed-batch processes. J. Biotechnol. 135: 217-223. https://doi.org/10.1016/j.jbiotec.2008.03.008
  3. Borth N, Mattanovich D, Kunert R, Katinger H. 2005. Effect of increased expression of protein disulfide isomerase and heavy chain binding protein on antibody secretion in a recombinant CHO cell line. Biotechnol. Prog. 21: 106-111.
  4. Butler M. 2005. Animal cell cultures: recent achievements and perspectives in the production of biopharmaceuticals. Appl. Microbiol. Biotechnol. 68: 283-291. https://doi.org/10.1007/s00253-005-1980-8
  5. Cacciatore JJ, Chasin LA, Leonard EF. 2010. Gene amplification and vector engineering to achieve rapid and high-level therapeutic protein production using the Dhfr-based CHO cell selection system. Biotechnol. Adv. 28: 673-681. https://doi.org/10.1016/j.biotechadv.2010.04.003
  6. Figueroa Jr B, Chen S, Oyler GA, Hardwick JM, Betenbaugh MJ. 2004. Aven and Bcl-xL enhance protection against apoptosis for mammalian cells exposed to various culture conditions. Biotechnol. Bioeng. 85: 589-600. https://doi.org/10.1002/bit.10913
  7. Florin L, Pegel A, Becker E, Hausser A, Olayioye MA, Kaufmann H. 2009. Heterologous expression of the lipid transfer protein CERT increases therapeutic protein productivity of mammalian cells. J. Biotechnol. 141: 84-90. https://doi.org/10.1016/j.jbiotec.2009.02.014
  8. Fugmann T, Hausser A, Schoffler P, Schmid S, Pfizenmaier K, Olayioye MA. 2007. Regulation of secretory transport by protein kinase D-mediated phosphorylation of the ceramide transfer protein. J. Cell Biol. 178: 15-22. https://doi.org/10.1083/jcb.200612017
  9. Fussenegger M, Schlatter S, Datwyler D, Mazur X, Bailey JE. 1998. Controlled proliferation by multigene metabolic engineering enhances the productivity of Chinese hamster ovary cells. Nat. Biotechnol. 16: 468-472. https://doi.org/10.1038/nbt0598-468
  10. Geserick C, Bonarius HP, Kongerslev L, Hauser H, Mueller PP. 2000. Enhanced productivity during controlled proliferation of BHK cells in continuously perfused bioreactors. Biotechnol. Bioeng. 69: 266-274. https://doi.org/10.1002/1097-0290(20000805)69:3<266::AID-BIT4>3.0.CO;2-Z
  11. Hanada K, Kumagai K, Yasuda S, Miura Y, Kawano M, Fukasawa M, Nishijima M. 2003. Molecular machinery for non-vesicular trafficking of ceramide. Nature 426: 803-809. https://doi.org/10.1038/nature02188
  12. Jaluria P, Chu C, Betenbaugh M, Shiloach J. 2008. Cells by design: a mini-review of targeting cell engineering using DNA microarrays. Mol. Biotechnol. 39: 105-111. https://doi.org/10.1007/s12033-008-9048-5
  13. Jayapal KP, Wlaschin KF, Hu WS, Yap MGS. 2007. Recombinant protein therapeutics from CHO cells - 20 years and counting. Chem. Eng. Prog. 103: 40-47.
  14. Josse L, Smales CM, Tuite MF. 2012. Engineering the chaperone network of CHO cells for optimal recombinant protein production and authenticity. Methods Mol. Biol. 824: 595-608. https://doi.org/10.1007/978-1-61779-433-9_32
  15. Khan SU, Schroder M. 2008. Engineering of chaperone systems and of the unfolded protein response. Cytotechnology 57: 207-231. https://doi.org/10.1007/s10616-008-9157-9
  16. Kim JY, Kim YG, Lee GM. 2012. CHO cells in biotechnology for production of recombinant proteins: current state and further potential. Appl. Microbiol. Biotechnol. 93: 917-930. https://doi.org/10.1007/s00253-011-3758-5
  17. Kim SH, Lee GM. 2007. Functional expression of human pyruvate carboxylase for reduced lactic acid formation of Chinese hamster ovary cells (DG44). Appl. Microbiol. Biotechnol. 76: 659-665. https://doi.org/10.1007/s00253-007-1041-6
  18. Kramer O, Klausing S, Noll T. 2010. Methods in mammalian cell line engineering: from random mutagenesis to sequencespecific approaches. Appl. Microbiol. Biotechnol. 88: 425-436. https://doi.org/10.1007/s00253-010-2798-6
  19. Ku SC, Ng DT, Yap MG, Chao SH. 2008. Effects of overexpression of X-box binding protein 1 on recombinant protein production in Chinese hamster ovary and NS0 myeloma cells. Biotechnol. Bioeng. 99: 155-164. https://doi.org/10.1002/bit.21562
  20. Ku SC, Toh PC, Lee YY, Chusainow J, Yap MG, Chao SH. 2010. Regulation of XBP-1 signaling during transient and stable recombinant protein production in CHO cells. Biotechnol. Prog. 26: 517-526.
  21. Lee AH, Iwakoshi NN, Glimcher LH. 2003. XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Mol. Cell Biol. 23: 7448- 7459. https://doi.org/10.1128/MCB.23.21.7448-7459.2003
  22. Meents H, Enenkel B, Werner RG, Fussenegger M. 2002. p27Kip1-mediated controlled proliferation technology increases constitutive sICAM production in CHO-DUKX adapted for growth in suspension and serum-free media. Biotechnol. Bioeng. 79: 619-627. https://doi.org/10.1002/bit.10322
  23. O'Callaghan PM, James DC. 2008. Systems biotechnology of mammalian cell factories. Brief. Funct. Genomic. Proteomic. 7: 95-110. https://doi.org/10.1093/bfgp/eln012
  24. Ohya T, Hayashi T, Kiyama E, Nishii H, Miki H, Kobayashi K, et al. 2008. Improved production of recombinant human antithrombin III in Chinese hamster ovary cells by ATF4 overexpression. Biotechnol. Bioeng. 100: 317-324. https://doi.org/10.1002/bit.21758
  25. Onitsuka M, Kim WD, Ozaki H, Kawaguchi A, Honda K, Kajiura H, et al. 2012. Enhancement of sialylation on humanized IgG-like bispecific antibody by overexpression of alpha2,6-sialyltransferase derived from Chinese hamster ovary cells. Appl. Microbiol. Biotechnol. 94: 69-80. https://doi.org/10.1007/s00253-011-3814-1
  26. Park H, Kim IH, Kim IY, Kim KH, Kim HJ. 2000. Expression of carbamoyl phosphate synthetase I and ornithine transcarbamoylase genes in Chinese hamster ovary DHFR-cells decreases accumulation of ammonium ion in culture media. J. Biotechnol. 81: 129-140. https://doi.org/10.1016/S0168-1656(00)00282-0
  27. Peng RW, Fussenegger M. 2009. Molecular engineering of exocytic vesicle traffic enhances the productivity of Chinese hamster ovary cells. Biotechnol. Bioeng. 102: 1170-1181. https://doi.org/10.1002/bit.22141
  28. Rouf SA, Moo-Young M, Chisti Y. 1996. Tissue-type plasminogen activator: characteristics, applications and production technology. Biotechnol. Adv. 14: 239-266. https://doi.org/10.1016/0734-9750(96)00019-5
  29. Schroder, M. 2006. The unfolded protein response. Mol. Biotechnol. 34: 279-290. https://doi.org/10.1385/MB:34:2:279
  30. Seth G, Charaniya S, Wlaschin KF, Hu WS. 2007. In pursuit of a super producer - alternative paths to high producing - recombinant mammalian cells. Curr. Opin. Biotechnol. 18: 557-564. https://doi.org/10.1016/j.copbio.2007.10.012
  31. Tey BT, Singh RP, Piredda L, Piacentini M, Al-Rubeai M. 2000. Bcl-2 mediated suppression of apoptosis in myeloma NS0 cultures. J. Biotechnol. 79: 147-159. https://doi.org/10.1016/S0168-1656(00)00223-6
  32. Tigges M, Fussenegger M. 2006. Xbp1-based engineering of secretory capacity enhances the productivity of Chinese hamster ovary cells. Metab. Eng. 8: 264-272. https://doi.org/10.1016/j.ymben.2006.01.006
  33. Wong NS, Yap MG, Wang DI. 2006. Enhancing recombinant glycoprotein sialylation through CMP-sialic acid transporter over expression in Chinese hamster ovary cells. Biotechnol. Bioeng. 93: 1005-1016. https://doi.org/10.1002/bit.20815
  34. Wurm FM. 2004. Production of recombinant protein therapeutics in cultivated mammalian cells. Nat. Biotechnol. 22: 1393-1398. https://doi.org/10.1038/nbt1026
  35. Zhu J. 2012. Mammalian cell protein expression for biopharmaceutical production. Biotechnol. Adv. 25: 1158-1170.
  36. Zustiak MP, Dorai H, Betenbaugh MJ, Sauerwald TM. 2012. Controlling apoptosis to optimize yields of proteins from mammalian cells. Methods Mol. Biol. 801: 111-123. https://doi.org/10.1007/978-1-61779-352-3_8

Cited by

  1. Bioprocess engineering: micromanaging Chinese hamster ovary cell phenotypes vol.2, pp.4, 2013, https://doi.org/10.4155/pbp.14.28
  2. Insights on biomarkers from Chinese hamster ovary ‘omics’ studies vol.2, pp.5, 2013, https://doi.org/10.4155/pbp.14.45
  3. Conserved microRNA function as a basis for Chinese hamster ovary cell engineering vol.37, pp.4, 2015, https://doi.org/10.1007/s10529-014-1751-7
  4. Cell line development for biomanufacturing processes: recent advances and an outlook vol.37, pp.8, 2013, https://doi.org/10.1007/s10529-015-1843-z
  5. Humanizing glycosylation pathways in eukaryotic expression systems vol.33, pp.1, 2013, https://doi.org/10.1007/s11274-016-2172-7
  6. Mild hypothermia upregulates myc and xbp1s expression and improves anti-TNFα production in CHO cells vol.13, pp.3, 2013, https://doi.org/10.1371/journal.pone.0194510
  7. Transcription factor engineering in CHO cells for recombinant protein production vol.39, pp.5, 2013, https://doi.org/10.1080/07388551.2019.1605496
  8. Overexpression of transcription factor Foxa1 and target genes remediate therapeutic protein production bottlenecks in Chinese hamster ovary cells vol.117, pp.4, 2013, https://doi.org/10.1002/bit.27274
  9. Compartmentalized Proteomic Profiling Outlines the Crucial Role of the Classical Secretory Pathway during Recombinant Protein Production in Chinese Hamster Ovary Cells vol.6, pp.19, 2013, https://doi.org/10.1021/acsomega.0c06030