DOI QR코드

DOI QR Code

Efficiency and Midgut Histopathological Effect of the Newly Isolated Bacillus thuringiensis KS ${\delta}$-Endotoxins on the Emergent Pest Tuta absoluta

  • Jamoussi, Kais (Biopesticides Team (LPAP), Centre of Biotechnology of Sfax, University of Sfax) ;
  • Sellami, Sameh (Biopesticides Team (LPAP), Centre of Biotechnology of Sfax, University of Sfax) ;
  • Nasfi, Zina (Biopesticides Team (LPAP), Centre of Biotechnology of Sfax, University of Sfax) ;
  • Krichen-Makni, Saloua (Laboratory of Pathological Anatomy and Cytology, Habib Bourguiba Hospital) ;
  • Tounsi, Slim (Biopesticides Team (LPAP), Centre of Biotechnology of Sfax, University of Sfax)
  • Received : 2013.01.14
  • Accepted : 2013.03.24
  • Published : 2013.08.28

Abstract

Tuta absoluta (Povolny, 1994) is a devastating moth to the Solanaceae plants. It is a challenging pest to control, especially on tomatoes. In this work, we studied the entomopathogenic activity of the Cry-forming ${\delta}$-endotoxins produced by Bacillus thuringiensis strain KS and B. thuringiensis kurstaki reference strain HD1 against T. absoluta. These strains carried the cry2, cry1Ab, cry1Aa/cry1Ac, and cry1I genes, and KS also carried a cry1C gene. The ${\delta}$-endotoxins of KS were approximately twofold more toxic against the third instar larvae than those of HD1, as they showed lower 50% and 90% lethal concentrations (0.80 and 2.70 ${\mu}g/cm^2$ (${\delta}$-endotoxins/tomato leaf)) compared with those of HD1 (1.70 and 4.50 ${\mu}g/cm^2$) (p < 0.05). Additionally, the larvae protease extract showed at least six caseinolytic activities, which activated the KS and HD1 ${\delta}$-endotoxins, yielding the active toxins of about 65 kDa and the protease-resistant core of about 58 kDa. Moreover, the histopathological effects of KS and HD1 ${\delta}$-endotoxins on the larvae midgut consisted of an apical columnar cell vacuolization, microvillus damage, and epithelial cell disruption. These results showed that the KS strain could be a candidate for T. absoluta control.

Keywords

References

  1. Bradford MM. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilising the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  2. Bravo A, Gill SS, Soberon M. 2007. Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon 49: 423-435. https://doi.org/10.1016/j.toxicon.2006.11.022
  3. Bulushova NV, Elpidina EN, Zhuzhikov DP, Lyutikova LI, Ortego F, Kirillova NE, et al. 2011. Complex of digestive proteinases of Galleria mellonella caterpillars: Composition, properties, and limited proteolysis of Bacillus thuringiensis endotoxins. Biochemistry (Mosc) 76: 581-589. https://doi.org/10.1134/S0006297911050087
  4. Carozzi N B , Karmer VC, Warren GW, Evola S, Koziel MG. 1991. Prediction of insecticidal activity of Bacillus thuringiensis strains by polymerase chain reaction product profiles. Appl. Environ. Microbiol. 57: 3057-3061.
  5. Chakrabarti SK, Lutz KA, Lertwiriyawong B, Svab Z, Maliga P. 2006. Expression of the cry9Aa2 B.t. gene in tobacco chloroplasts confers resistance to potato tuber moth. Transgenic Res. 15: 481-488. https://doi.org/10.1007/s11248-006-0018-z
  6. Chang L, Grant R, Aronson A. 2001. Regulation of the packaging of Bacillus thuringiensis $\delta$-endotoxins into inclusions. Appl. Environ. Microbiol. 67: 5032-5036. https://doi.org/10.1128/AEM.67.11.5032-5036.2001
  7. Chougule NP, Doyle E, Fitches E, Gatehouse JA. 2008. Biochemical characterization of midgut digestive proteases from Mamestra brassicae (cabbage moth; Lepidoptera: Noctuidae) and effect of soybean Kunitz inhibitor (SKTI) in feeding assays. J. Insect. Physiol. 54: 563-572. https://doi.org/10.1016/j.jinsphys.2007.12.005
  8. Crickmore N, Zeigler DR, Schnepf E, Van Rie J, Lereclus D, Baum J, et al. 2012. Bacillus thuringiensis toxin nomenclature. Accessible at http://www.lifesci.sussex.ac.uk/home/Neil_Crickmore/Bt/toxins2.html.
  9. Desneux N, Wajnberg E, Wyckhuys KAG, Burgio G, Arpaia S, Narváez-Vasquez CA, et al. 2010. Biological invasion of European tomato crops by Tuta absoluta: Ecology, geographic expansion and prospects for biological control. J. Pest Sci. 83: 197-215. https://doi.org/10.1007/s10340-010-0321-6
  10. Entwistle P, Bailey MJ, Cory J, Higgs S. 1993. Bacillus thuringiensis: An Environmental Pesticide, Theory and Practice. JohnWiley & Sons, Inc., New York, NY
  11. Escriche B, Ferre J, Silva FJ. 1997. Occurrence of a common binding site in Mamestra brassicae, Phthorimaea operculella, and Spodoptera exigua for the insecticidal crystal proteins CrylA from Bacillus thuringiensis. Insect. Biochem. Mol. Biol. 27: 651-656. https://doi.org/10.1016/S0965-1748(97)00039-8
  12. Galarza J. 1984. Laboratory assessment of some solanaceous plants as possible food plants of the tomato moth Scrobipalpula absoluta (Meyr.) (Lepidoptera: Gelechiidae). IDIA 421/424: 30-32.
  13. Garcia-Carreno F, Dimes L, Haard N. 1993. Substrate gel electrophoresis for composition and molecular weight of proteinases or proteinaceous proteinase inhibitors. Anal. Biochem. 214: 65-69. https://doi.org/10.1006/abio.1993.1457
  14. Geiser M, Schweitzer S, Grimm C. 1986. The hypervariable region in the genes coding for entomopathogenic crystal proteins of Bacillus thuringiensis: Nucleotide sequence of the kur Hdl gene of subsp kurstaki HD-1. Gene 48: 109-118. https://doi.org/10.1016/0378-1119(86)90357-4
  15. Ghribi D, Zouari N, Trigui W, Jaoua S. 2007. Use of sea water as salts source in starch and soya bean based media, for the production of Bacillus thuringiensis bioinsecticides. Process Biochem. 42: 374-378. https://doi.org/10.1016/j.procbio.2006.09.006
  16. Gomez I, Pardo-Lopez L, Muoz-Garay C, Fernandez LE, Perez C, Sanchez J, et al. 2007. Role of receptor interaction in the mode of action of insecticidal Cry and Cyt toxins produced by Bacillus thuringiensis. Peptides 28: 169-173. https://doi.org/10.1016/j.peptides.2006.06.013
  17. Gouffon C, Van Vliet A, Van Rie J, Jansens S, Jurat-Fuentes JL. 2011. Binding sites for Bacillus thuringiensis Cry2Ae toxin on Heliothine brush border membrane vesicles are not shared with Cry1A, Cry1F, or Vip3A toxin. Appl. Environ. Microbiol. 77: 3182-3188. https://doi.org/10.1128/AEM.02791-10
  18. Hernandez CS, Andrew R, Bel Y, Ferre J. 2005. Isolation and toxicity of Bacillus thuringiensis from potato-growing areas in Bolivia. J. Invertebr. Pathol. 88: 8-16. https://doi.org/10.1016/j.jip.2004.10.006
  19. Herrero S, Gonzalez-Cabrera J, Tabashnik BE, Ferre J. 2001. Shared binding sites in Lepidoptera for Bacillus thuringiensis Cry1Ja and Cry1A toxins. Appl. Environ. Microbiol. 67: 5729- 5734. https://doi.org/10.1128/AEM.67.12.5729-5734.2001
  20. Ingle SS, Trivedi N, Prasad R, Kuruvilla J, Rao KK, Chatpar HS. 2001. Aminopeptidase-N from the Helicoverpa armigera (Hubner) brush border membrane vesicles as a receptor of Bacillus thuringiensis Cry1Ac $\delta$-endotoxin. Curr. Microbiol. 43: 255-259. https://doi.org/10.1007/s002840010297
  21. Janete ADS, Hernandez-Rodriguez CS, Ferre J. 2009. Interaction of Bacillus thuringiensis Cry1 and Vip3A proteins with Spodoptera frugiperda midgut binding sites. Appl. Environ. Microbiol. 75: 2236-2237. https://doi.org/10.1128/AEM.02342-08
  22. Jenkins JL, Dean DH. 2001. Binding specificity of Bacillus thuringiensis Cry1Aa for purified, native Bombyx mori aminopeptidase N and cadherin-like receptors. BMC Biochem. 2: 12. https://doi.org/10.1186/1471-2091-2-12
  23. Kallassy-Awad M, Saadaoui I, Rouis S, Tounsi S, Jaoua S. 2007. Differentiation between Bacillus thuringiensis strains by gyrB PCR-Sau3AI fingerprinting. Mol. Biotechnol. 35: 171-177. https://doi.org/10.1007/BF02686112
  24. Karumbaiah L, Oppert B, Jurat-Fuentes JL, Adang MJ. 2007. Analysis of midgut proteinases from Bacillus thuringiensissusceptible and -resistant Heliothis virescens (Lepidoptera: Noctuidae). Comp. Biochem. Phys. B 146: 139-146. https://doi.org/10.1016/j.cbpb.2006.10.104
  25. Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685. https://doi.org/10.1038/227680a0
  26. Lee IH, Je YH, Chang JH. 2001. Isolation and characterization of a Bacillus thuringiensis ssp. kurstaki strain toxic to Spodoptera exigua and Culex pipiens. Curr. Microbiol. 43: 284-287. https://doi.org/10.1007/s002840010302
  27. Lee MK, Walters FS, Hart H, Palekar N, Chen JS. 2003. The mode of action of the Bacillus thuringiensis vegetative insecticidal protein VIP3A differs from that of Cry1Ab $\delta$-endotoxin. Appl. Environ. Microbiol. 69: 4648-4657. https://doi.org/10.1128/AEM.69.8.4648-4657.2003
  28. Lehane MJ. 1997. Peritrophic matrix structure and function. Annu. Rev. Entomol. 42: 525-550. https://doi.org/10.1146/annurev.ento.42.1.525
  29. Lietti MMM, Botto E, Alzogaray RA. 2005. Insecticide resistance in Argentine populations of Tuta absoluta (Lep.: Gelechiidae). Neotrop. Entomol. 34: 113-119. https://doi.org/10.1590/S1519-566X2005000100016
  30. Manzano M, Cocolin L, Cantoni C, Comi G. 2003. Bacillus cereus, Bacillus thuringiensis and Bacillus mycoides differentiation using a PCR-RE technique. Int. J. Food Microbiol. 81: 249-254. https://doi.org/10.1016/S0168-1605(02)00222-2
  31. OEPP/EPPO. 2005. Data sheets on quarantine pests: Tuta absoluta. EPPO Bulletin 35: 434-435. https://doi.org/10.1111/j.1365-2338.2005.00852.x
  32. OEPP/EPPO. 2011. EPPO alert list. Accessible at http:// www.eppo.org/QUARANTINE/quarantine.htm.
  33. Peng D, Xu X, Ye W, Yu Z, Sun M. 2010. Helicoverpa armigera cadherin fragment enhances Cry1Ac insecticidal activity by facilitating toxin-oligomer formation. Appl. Microbiol. Biotechnol. 85: 1033-1040. https://doi.org/10.1007/s00253-009-2142-1
  34. Peyronnet O, Noulin JF, Laprade R, Schwartz JL. 2004. Patch-clamp study of the apical membrane of the midgut of Manduca sexta larvae: Direct demonstration of endogenous channels and effect of a Bacillus thuringiensis toxin. J. Insect Physiol. 50: 791-803. https://doi.org/10.1016/j.jinsphys.2004.05.013
  35. Peyronnet O, Vachon V, Schwartz JL, Laprade R. 2001. Ion channels induced in planar lipid bilayers by the Bacillus thuringiensis toxin Cry1Aa in the presence of Gypsy moth (Lymantria dispar) brush border membrane. J. Membrane Biol. 184: 45-54. https://doi.org/10.1007/s00232-001-0071-8
  36. Ruiz LM, Segura C, Trujillo J, Orduz S. 2004. In vivo binding of the Cry11Bb toxin of Bacillus thuringiensis subsp. medellin to the midgut of mosquito larvae (Diptera: Culicidae). Mem. Inst. Oswaldo Cruz 99: 73-79. https://doi.org/10.1590/S0074-02762004000100013
  37. Ryerse JS, Purcell JP, Summers RD, Lavrik PB. 1992. Peritrophic membrane structure and formation in the larva of a moth, Heliothis. Tissue Cell 24: 751-771. https://doi.org/10.1016/0040-8166(92)90047-B
  38. Saadaoui I, Rouis S, Jaoua S. 2009. A new Tunisian strain of Bacillus thuringiensis kurstaki having high insecticidal activity and $\delta$-endotoxin yield. Arch. Microbiol. 191: 341-348. https://doi.org/10.1007/s00203-009-0458-y
  39. Sambrook J, Frisch EF, Maniatis T. 1989. Molecular Cloning: A Laboratory Manual, 2nd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
  40. Schnepf E, Crickmore N, Van Rie J, Lereclus D, Baum J, Feitelson J, et al. 1998. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62: 775-806.
  41. Silva GA, Picanco MC, Bacci L, Crespo AL, Rosado JF, Guedes RN. 2011. Control failure likelihood and spatial dependence of insecticide resistance in the tomato pinworm, Tuta absoluta. Pest Manag. Sci. 67: 913-920. https://doi.org/10.1002/ps.2131
  42. Siqueira HAA, Guedes RNC, Fragoso DB, Magalha LC. 2001. Abamectin resistance and synergism in Brazilian populations of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Int. J. Pest Manag. 47: 247-251. https://doi.org/10.1080/09670870110044634
  43. Siqueira HAA, Guedes RNC, Picanco MC. 2000. Insecticide resistance in populations of Tuta absoluta (Lep.: Gelechiidae). Agr. Forest Entomol. 2: 147-153. https://doi.org/10.1046/j.1461-9563.2000.00062.x
  44. Soberon M, Pardo L, Munoz-Garay C, Sanchez J, Gomez I, Porta H, et al. 2010. Pore formation by Cry toxins. Adv. Exp. Med. Biol. 677: 127-142. https://doi.org/10.1007/978-1-4419-6327-7_11
  45. Tabashnik BE, Morin S, Unnithan GC, Yelich AJ, Ellers-Kirk C. 2012. Sustained susceptibility of pink bollworm to Bt cotton in the United States. GM Crops 3. Accessible at http://www.landesbioscience.com/journals/gmcrops/toc/volume/ 3/issue/3/.
  46. Tabashnik B E, S isterson M S, E llsworth P C, D ennehy T J, Antilla L, Liesner L, et al. 2010. Suppressing resistance to Bt cotton with sterile insect releases. Nat. Biotechnol. 28: 1304-1307. https://doi.org/10.1038/nbt.1704
  47. Tellam RL, Wijffels G, Willadsen P. 1999. Peritrophic matrix proteins. Insect Biochem. Mol. Biol. 29: 87-101. https://doi.org/10.1016/S0965-1748(98)00123-4
  48. Thammasittirong A, Attathom T. 2008. PCR-based method for the detection of cry genes in local isolates of Bacillus thuringiensis from Thailand. J. Invertebr. Pathol. 98: 121-126. https://doi.org/10.1016/j.jip.2008.03.001
  49. Theunis W, Aguda RM, Cruz WT, Decock C, Peferoen M, Lambert B, et al. 1998. Bacillus thuringiensis isolates from the Philippines: Habitat distribution, delta-endotoxin diversity, and toxicity to rice stem borers (Lepidoptera: Pyralidae). Bull. Entomol. Res. 88: 335-342. https://doi.org/10.1017/S0007485300025955
  50. Tounsi S, Aoun AE, Blight M, Rebai A, Jaoua S. 2006. Evidence of oral toxicity of Photorhabdus temperata strain K122 against Prays oleae and its improvement by heterologous expression of Bacillus thuringiensis cry1Aa and cry1Ia genes. J. Invertebr. Pathol. 91: 131-135. https://doi.org/10.1016/j.jip.2005.11.004
  51. Travers RS, Martin P, Reichelderfer CF. 1987. Selective process for efficient isolation of soil Bacillus species. Appl. Environ. Microbiol. 53: 1263-1266.
  52. Venables WN, Smith DM. 2004. The R. development core team. An introduction to R. version 1.9.1. Accessible at http://www.r-project.org/.

Cited by

  1. Mating behaviour of female Tuta absoluta (Lepidoptera: Gelechiidae): polyandry increases reproductive output vol.87, pp.3, 2013, https://doi.org/10.1007/s10340-014-0576-4
  2. Toxicity, Activation Process, and Histopathological Effect of Bacillus thuringiensis Vegetative Insecticidal Protein Vip3Aa16 on Tuta absoluta vol.175, pp.4, 2013, https://doi.org/10.1007/s12010-014-1393-1
  3. Investigation of larvae digestive β-glucosidase and proteases of the tomato pest Tuta absoluta for inhibiting the insect development vol.106, pp.3, 2016, https://doi.org/10.1017/s0007485316000079
  4. Labeling membrane receptors with lectins and evaluation of the midgut histochemistry of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) populations with different levels of susceptibility to formul vol.74, pp.11, 2013, https://doi.org/10.1002/ps.5051