DOI QR코드

DOI QR Code

Acetone-Butanol-Ethanol (ABE) Production in Fermentation of Enzymatically Hydrolyzed Cassava Flour by Clostridium beijerinckii BA101 and Solvent Separation

  • Lepiz-Aguilar, Leonardo (School of Chemical Engineering, University of Costa Rica (UCR)) ;
  • Rodriguez-Rodriguez, Carlos E. (Food and Water Microbiology Laboratory, Faculty of Microbiology, UCR) ;
  • Arias, Maria Laura (Food and Water Microbiology Laboratory, Faculty of Microbiology, UCR) ;
  • Lutz, Giselle (School of Chemistry, UCR)
  • Received : 2013.01.08
  • Accepted : 2013.05.06
  • Published : 2013.08.28

Abstract

Cassava constitutes an abundant substrate in tropical regions. The production of butanol in ABE fermentation by Clostridium beijerinckii BA101 using cassava flour (CF) was scaled-up to bioreactor level (5 L). Optimized fermentation conditions were applied; that is, $40^{\circ}C$, 60 g/l CF, and enzymatic pretreatment of the substrate. The batch fermentation profile presented an acidogenic phase for the first 24 h and a solventogenic phase afterwards. An average of 37.01 g/l ABE was produced after 83 h, with a productivity of 0.446 g/l/h. Butanol production was 25.71 g/l with a productivity of 0.310 g/l/h, high or similar to analogous batch processes described for other substrates. Solvent separation by different combinations of fractioned and azeotropic distillation and liquid-liquid separation were assessed to evaluate energetic and economic costs in downstream processing. Results suggest that the use of cassava as a substrate in ABE fermentation could be a cost-effective way of producing butanol in tropical regions.

Keywords

References

  1. Annous BA, Blaschek HP. 1991. Isolation and characterization of Clostridium acetobutylicum mutants with enhanced amylolytic activity. Appl. Environ. Microbiol. 57: 2544-2548.
  2. Ezeji T, Qureshi N, Blaschek HP. 2004. Acetone butanol ethanol (ABE) production from concentrated substrate: reduction in substrate inhibition by fed-batch technique and product inhibition by gas stripping. Appl. Microbiol. Biotechnol. 63: 653-658. https://doi.org/10.1007/s00253-003-1400-x
  3. Ezeji T, Qureshi N, Blaschek HP. 2007. Butanol production from agricultural residues: impact of degradation products on Clostridium beijerinckii growth and butanol fermentation. Biotechnol. Bioeng. 97: 1460-1469. https://doi.org/10.1002/bit.21373
  4. Formanek J, Mackie R, Blaschek HP. 1997. Enhanced butanol production by Clostridium beijerinckii BA101 grown in semi-defined P2 medium containing 6 percent maltodextrin or glucose. Appl. Environ. Microbiol. 63: 2306-2310.
  5. Friedl A, Qureshi N, Maddox IS. 1991. Continuous acetonebutanol- ethanol (ABE) fermentation using immobilized cells of Clostridium acetobutylicum in a packed bed reactor and integration with product removal by pervaporation. Biotechnol. Bioeng. 38: 518-527. https://doi.org/10.1002/bit.260380510
  6. Gu Y, Hu S, Chen J, Shao L, He H, Yang Y, et al. 2009. Ammonium acetate enhances solvent production by Clostridium acetobutylicum EA2018 using cassava as a fermentation medium. J. Ind. Microbiol. Biotechnol. 36: 1225-1232. https://doi.org/10.1007/s10295-009-0604-1
  7. Gu Y, Jiang Y, Wu H, Liu X, Li Z, Li J, et al. 2011. Economical challenges to microbial producers of butanol: feedstock, butanol ratio and titer. Biotechnol. J. 6: 1348-1357. https://doi.org/10.1002/biot.201100046
  8. Haggstrom L. 1985. Acetone-butanol fermentation and its variants. Biotechnol. Adv. 3: 13-28. https://doi.org/10.1016/0734-9750(85)90003-5
  9. Jesse TW, Ezeji TC, Qureshi N, Blaschek HP. 2002. Production of butanol from starch-based waste packing peanuts and agricultural waste. J. Ind. Microbiol. Biotechnol. 29: 117-123. https://doi.org/10.1038/sj.jim.7000285
  10. Jones DT, Woods R. 1986. Acetone-butanol fermentation revisited. Microbiol. Rev. 50: 484-524.
  11. Lepiz-Aguilar L, Rodriguez-Rodriguez CE, Arias ML, Lutz G, Ulate W. 2011. Butanol production by Clostridium beijerinckii BA101 using cassava flour as fermentation substrate: enzymatic versus chemical pretreatments. World J. Microbiol. Biotechnol. 27: 1933-1939. https://doi.org/10.1007/s11274-010-0630-1
  12. Lu C, Zhao J, Yang ST, Wei D. 2012. Fed-batch fermentation for n-butanol production from cassava bagasse hydrolysate in a fibrous bed reactor with continuous gas stripping. Bioresour. Technol. 104: 380-387. https://doi.org/10.1016/j.biortech.2011.10.089
  13. Pandey A, Soccol CR, Nigam P, Soccol VT, Vandenberghe LPS, Mohan R. 2000. Biotechnological potential of agroindustrial residues. II: cassava bagasse. Bioresour. Technol. 74: 81-87. https://doi.org/10.1016/S0960-8524(99)00143-1
  14. Parekh M, Formanek J, Blaschek HP. 1998. Development of a cost-effective glucose-corn steep medium for production of butanol by Clostridium beijerinckii. J. Ind. Microbiol. Biotechnol. 21: 187-191. https://doi.org/10.1038/sj.jim.2900569
  15. Parekh M, Formanek J, Blaschek HP. 1999. Pilot-scale production of butanol by Clostridium beijerinckii BA101 using a low-cost fermentation medium based on corn steep water. Appl. Microbiol. Biotechnol. 51: 152-157. https://doi.org/10.1007/s002530051375
  16. Qureshi N, Ezeji TC. 2008. Butanol, 'a superior biofuel' production from agricultural residues (renewable biomass): recent progress in technology. Biofuels Bioprod. Bioref. 2: 319-330. https://doi.org/10.1002/bbb.85
  17. Qureshi N, Lolas A, Blaschek HP. 2001. Soy molasses as fermentation substrate for production of butanol using Clostridium beijerinckii BA101. J. Ind. Microbiol. Biotechnol. 26: 290-295. https://doi.org/10.1038/sj.jim.7000131
  18. Qureshi N, Saha BC, Cotta MA. 2007. Butanol production from wheat straw hydrolysate using Clostridium beijerinckii. Bioprocess Biosyst. Eng. 30: 419-427. https://doi.org/10.1007/s00449-007-0137-9
  19. Qureshi N, Saha BC, Hector RE, Cotta MA. 2008. Removal of fermentation inhibitors from alkaline peroxide pretreated and enzymatically hydrolyzed wheat straw: production of butanol from hydrolysate using Clostridium beijerinckii in batch reactors. Biomass Bioenergy 32: 1353-1358. https://doi.org/10.1016/j.biombioe.2008.04.009
  20. Qureshi N, Hughes S, Madoox IS, Cotta MA. 2005. Energyefficient recovery of butanol from model solutions and fermentation broth by adsorption. Bioprocess Biosyst. Eng. 27: 215-222. https://doi.org/10.1007/s00449-005-0402-8
  21. Qureshi N, Ezeji TC, Ebener J, Dien BS, Cotta MA, Blaschek HP. 2008. Butanol production by Clostridium beijerinckii. Part I: use of acid and enzyme hydrolyzed corn fiber. Bioresour. Technol. 99: 5915-5922. https://doi.org/10.1016/j.biortech.2007.09.087
  22. Qureshi N, Li XL, Hughes S, Saha BC, Cotta MA. 2006. Butanol production from corn fiber xylan using Clostridium acetobutylicum. Biotechnol. Prog. 22: 673-680. https://doi.org/10.1021/bp050360w
  23. Sadavisam S, Manickam A. 1996. Biochemical Methods. New Age International, New Delhi, India.
  24. Soccol CR. 1996. Biotechnological products from cassava roots by solid state fermentation. J. Sci. Ind. Res. 55: 358-364.
  25. Thang VH, Kanda K, Kobayashi G. 2010. Production of acetone-butanol-ethanol (ABE) in direct fermentation of cassava by Clostridium saccharoperbutylacetonicum N1.4. Appl. Biochem. Biotechnol. 161: 157-170. https://doi.org/10.1007/s12010-009-8770-1
  26. Tran HTM, Cheirsilp B, Hodgson B, Umsakul K. 2010. Potential use of Bacillus subtilis in a co-culture with Clostridium butylicum for acetone-butanol-ethanol production from cassava starch. Biochem. Eng. J. 48: 260-267. https://doi.org/10.1016/j.bej.2009.11.001
  27. Xue C, Zhao J, Liu F, Lu C, Yang ST, Bai FW. 2013. Twostage in situ gas stripping for enhanced butanol fermentation and energy-saving product recovery. Bioresour. Technol. 135: 396-402. https://doi.org/10.1016/j.biortech.2012.07.062

Cited by

  1. A New Shuttle Plasmid That Stably Replicates in Clostridium acetobutylicum vol.25, pp.10, 2013, https://doi.org/10.4014/jmb.1504.04070
  2. Integration of biocatalyst and process engineering for sustainable and efficient n‐butanol production vol.15, pp.1, 2015, https://doi.org/10.1002/elsc.201400041
  3. Waste-to-biofuel: production of biobutanol from sago waste residues vol.38, pp.13, 2013, https://doi.org/10.1080/09593330.2017.1283362
  4. Effective continuous acetone-butanol-ethanol production with full utilization of cassava by immobilized symbiotic TSH06 vol.12, pp.None, 2013, https://doi.org/10.1186/s13068-019-1561-1
  5. Investigation of the Unusual Ability of the [FeFe] Hydrogenase from Clostridium beijerinckii to Access an O2-Protected State vol.142, pp.28, 2013, https://doi.org/10.1021/jacs.0c04964
  6. A comparative phenotypic and genomic analysis of Clostridium beijerinckii mutant with enhanced solvent production vol.329, pp.None, 2013, https://doi.org/10.1016/j.jbiotec.2021.02.002
  7. Process-Induced Modifications on Quality Attributes of Cassava (Manihot esculenta Crantz) Flour vol.9, pp.11, 2021, https://doi.org/10.3390/pr9111891
  8. Biobutanol production from cassava waste residue using Clostridium sp. AS3 in batch culture fermentation vol.12, pp.10, 2013, https://doi.org/10.1080/17597269.2019.1608671