DOI QR코드

DOI QR Code

p-Terphenyls from Fungus Paxillus curtisii Chelate Irons: A Proposed Role of p-Terphenyls in Fungus

  • Lee, In-Kyoung (Division of Biotechnology and Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University) ;
  • Ki, Dae-Won (Division of Biotechnology and Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University) ;
  • Kim, Seong-Eun (Division of Biotechnology and Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University) ;
  • Lee, Myeong-Seok (Division of Biotechnology and Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University) ;
  • Song, Ja-Gyeong (Division of Biotechnology and Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University) ;
  • Yun, Bong-Sik (Division of Biotechnology and Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University)
  • Received : 2012.10.15
  • Accepted : 2013.01.03
  • Published : 2013.05.28

Abstract

Diverse p-terphenyl compounds, named curtisians, have been isolated from the fungus Paxillus curtisii, and degradation of wood by this fungus is thought to be progressed by iron chelation of p-terphenyl curtisians. In this study, the iron chelation ability of p-terphenyls has been proved by chrome azurol S (CAS) assay, reducing power, and UV-visible spectroscopic analyses. The catechol moiety of p-terphenyl is an essential factor for the potent iron chelation ability, and thus deacylated curtisian with a tetrahydroxyl moiety in the central ring of p-terphenyl is more effective than acylated curtisians.

Keywords

References

  1. Ferreira, I. C., P. Baptista, M. Vilas-Boas, and L. Barros. 2007. Free-radical scavenging capacity and reducing power of wild edible mushrooms from northeast Portugal: Individual cap and stipe activity. Food Chem. 100: 1511-1516. https://doi.org/10.1016/j.foodchem.2005.11.043
  2. Goodell, B., J. Jellison, J. Liu, G. Daniel, A. Paszczynski, F. Fekete, et al. 1997. Low molecular weight chelators and phenolic compounds isolated from wood decay fungi and their role in the fungal biodegradation of wood. J. Biotechnol. 53: 133-162. https://doi.org/10.1016/S0168-1656(97)01681-7
  3. Hannauer, M., Y. Barda, G. L. A. Mislin, A. Shanzer, and I. J. Schalk. 2010. The ferrichrome uptake pathway in Pseudomonas aeruginosa involves an iron release mechanism with acylation of the siderophore and recycling of the modified desferrichrome. J. Bacteriol. 192: 1212-1220. https://doi.org/10.1128/JB.01539-09
  4. Hwang, J. S., K. S. Song, W. G. Kim, T. H. Lee, H. Koshino, and I. D. Yoo. 1997. Polyozellin, a new inhibitor of prolyl endopeptidase from Polyozellus multiplex. J. Antibiot. 50: 773-777. https://doi.org/10.7164/antibiotics.50.773
  5. Khokhar, S. and R. K. O. Apenten. 2003. Iron binding characteristics of phenolic compounds: Some tentative structure-activity relations. Food Chem. 81: 133-140. https://doi.org/10.1016/S0308-8146(02)00394-1
  6. Lee, I. K., B. S. Yun, J. P. Kim, W. G. Kim, I. J. Ryoo, S. Oh, et al. 2003. p-Terphenyl curtisians protect cultured neuronal cells against glutamate neurotoxicity via iron chelation. Planta Med. 69: 513-517. https://doi.org/10.1055/s-2003-40650
  7. Lee, I. K., B. S. Yun, S. M. Cho, W. G. Kim, J. P. Kim, I. J. Ryoo, et al. 1996. Betulinans A and B, two benzoquinone compounds from Lenzites betulina. J. Nat. Prod. 59: 1090-1092. https://doi.org/10.1021/np960253z
  8. Lee, I. K., J. Y. Jung, Y. S. Kim, M. H. Rhee, and B. S. Yun. 2009. p-Terphenyls from the fruiting bodies of Paxillus curtisii and their antioxidant properties. Bioorg. Med. Chem. 17: 4674-4680. https://doi.org/10.1016/j.bmc.2009.04.064
  9. Renshaw, J. C., G. D. Robson, A. P. J. Trinci, M. G. Wiebe, F. R. Livens, D. Collison, and R. J. Taylor. 2002. Fungal siderophores: Structures, functions and applications. Mycol. Res. 106: 1123-1142. https://doi.org/10.1017/S0953756202006548
  10. Schwyn, B. and J. B. Neilands. 1987. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 160: 47-56. https://doi.org/10.1016/0003-2697(87)90612-9
  11. Wang, X. N., W. T. Yu, and H. X. Lou. 2005. Antifungal constituents from the Chinese moss Homalia trichomanoides. Chem. Biodiv. 2: 139-145. https://doi.org/10.1002/cbdv.200490165

Cited by

  1. Hawaiienols A-D, Highly Oxygenated p-Terphenyls from an Insect-Associated Fungus, Paraconiothyrium hawaiiense vol.81, pp.8, 2018, https://doi.org/10.1021/acs.jnatprod.8b00106