DOI QR코드

DOI QR Code

Microbiological Features and Bioactivity of a Fermented Manure Product (Preparation 500) Used in Biodynamic Agriculture

  • Giannattasio, Matteo (Department of Agronomy, Animals, Natural Resources and Environment - DAFNAE, University of Padua) ;
  • Vendramin, Elena (Department of Agronomy, Animals, Natural Resources and Environment - DAFNAE, University of Padua) ;
  • Fornasier, Flavio (C.R.A.-R.P.S., Council for Research in Agriculture, Center for the Study of the Relationships between Plant and Soil) ;
  • Alberghini, Sara (Department of Agronomy, Animals, Natural Resources and Environment - DAFNAE, University of Padua) ;
  • Zanardo, Marina (Department of Agronomy, Animals, Natural Resources and Environment - DAFNAE, University of Padua) ;
  • Stellin, Fabio (Department of Agronomy, Animals, Natural Resources and Environment - DAFNAE, University of Padua) ;
  • Concheri, Giuseppe (Department of Agronomy, Animals, Natural Resources and Environment - DAFNAE, University of Padua) ;
  • Stevanato, Piergiorgio (Department of Agronomy, Animals, Natural Resources and Environment - DAFNAE, University of Padua) ;
  • Ertani, Andrea (Department of Agronomy, Animals, Natural Resources and Environment - DAFNAE, University of Padua) ;
  • Nardi, Serenella (Department of Agronomy, Animals, Natural Resources and Environment - DAFNAE, University of Padua) ;
  • Rizzi, Valeria (Parco Tecnologico Padano Foundation) ;
  • Piffanelli, Pietro (Parco Tecnologico Padano Foundation) ;
  • Spaccini, Riccardo (Department of Soil, Plant, Environment and Animal Production (DiSSPAPA), University of Naples Federico II) ;
  • Mazzei, Pierluigi (Interdepartmental Research Centre for Nuclear Magnetic Resonance Spectroscopy (CERMANU)) ;
  • Piccolo, Alessandro (Department of Soil, Plant, Environment and Animal Production (DiSSPAPA), University of Naples Federico II) ;
  • Squartini, Andrea (Department of Agronomy, Animals, Natural Resources and Environment - DAFNAE, University of Padua)
  • Received : 2012.12.03
  • Accepted : 2013.01.15
  • Published : 2013.05.28

Abstract

The fermented manure derivative known as Preparation 500 is traditionally used as a field spray in biodynamic agriculture for maintaining and increasing soil fertility. This work aimed at characterizing the product from a microbiological standpoint and at assaying its bioactive properties. The approach involved molecular taxonomical characterization of the culturable microbial community; ARISA fingerprints of the total bacteria and fungal communities; chemical elemental macronutrient analysis via a combustion analyzer; activity assays for six key enzymes; bioassays for bacterial quorum sensing and chitolipooligosaccharide production; and plant hormone-like activity. The material was found to harbor a bacterial community of $2.38{\times}10^8$ CFU/g dw dominated by Gram-positives with minor instances of Actinobacteria and Gammaproteobacteria. ARISA showed a coherence of bacterial assemblages in different preparation lots of the same year in spite of geographic origin. Enzymatic activities showed elevated values of ${\beta}$-glucosidase, alkaline phosphatase, chitinase, and esterase. The preparation had no quorum sensing-detectable signal, and no rhizobial nod gene-inducing properties, but displayed a strong auxin-like effect on plants. Enzymatic analyses indicated a bioactive potential in the fertility and nutrient cycling contexts. The IAA activity and microbial degradation products qualify for a possible activity as soil biostimulants. Quantitative details and possible modes of action are discussed.

Keywords

References

  1. Audus, L. J. 1972. Plant Growth Substances, Vol. 1. Leonard Hill, London.
  2. Brelles-Marino, C. and E. J. Bedmar. 2001. Detection, purification and characterization of quorum-sensing signal molecules in plant-associated bacteria. J. Biotechnol. 91: 197-209. https://doi.org/10.1016/S0168-1656(01)00330-3
  3. Brinton, W. F. 1997. Dynamic chemical processes underlying BD horn manure (500) preparation. J. Biodynamics 214: 1-8.
  4. Canellas, L. P., L. B. Dobbss, A. L. Oliveira, J. G. Chagasa, N. O. Aguiar, V. M. Rumjanek, et al. 2012. Chemical properties of humic matter as related to induction of plant lateral roots. Eur. J. Soil Sci. 63: 315-324.
  5. Canellas, L. P., A. Piccolo, L. B. Dobbss, R. Spaccini, F. L. Olivares, D. B. Zandonadi, and A. R. Facanha. 2010. Chemical composition and bioactivity properties of size-fractions separated from a vermicompost humic acid. Chemosphere 78: 457-466. https://doi.org/10.1016/j.chemosphere.2009.10.018
  6. Carpenter-Boggs, L., J. P. Reganold, and A. C. Kennedy. 2000. Biodynamic preparations: Short-term effects on crops, soils, and weed populations. Am. J. Altern. Agric. 15: 96-114.
  7. Carpenter-Boggs, L., J. P. Reganold, and A. C. Kennedy. 2000. Organic and biodynamic management: Effects on soil biology. Soil Sci. Soc. Am. J. 64: 1651-1659. https://doi.org/10.2136/sssaj2000.6451651x
  8. Davidson, E. A., L. F. Galloway, and M. K. Strand. 1987. Assessing available carbon: Comparison of techniques across selected forest soils. Commun. Soil Sci. Plant Anal. 18: 45-64. https://doi.org/10.1080/00103628709367802
  9. Deffune, G. and A. M. Scolfied. 1995. Effects of humic acids and three bio-dynamic preparations on the growth of wheat seedlings. Proc. 3rd ESA Congress, Abano-Podova, Paper Ref No. 3-56.
  10. D'Haeze, W. P., P. Mergaert, J. C. Prome, and M. Holsters. 2000. Nod factor requirements for efficient stem and root nodulation of the tropical legume Sesbania rostrata. J. Biol. Chem. 275: 15676-15684. https://doi.org/10.1074/jbc.275.21.15676
  11. Dobbs, L. B., L. P. Canellas, F. L. Olivares, N. O. Aguiar, L. E. Pereira Peres, M. Azevedo, et al. 2010. Bioactivity of chemically transformed humic matter from vermicompost on plant root growth. J. Chem. 58: 3681-3688.
  12. Ertani, A., M. Schiavon, A. Muscolo, and S. Nardi. 2013. Alfalfa plant-derived biostimulant stimulate short-term growth of salt stressed Zea mays L. plants. Plant Soil 364: 145. https://doi.org/10.1007/s11104-012-1335-z
  13. Ertani, A., O. Francioso, V. Tugnoli, V. Righi, and S. Nardi. 2011. Effect of commercial lignosulfonate-humate on Zea mays L. metabolism. J. Agric. Food Chem. 59: 11940-11948. https://doi.org/10.1021/jf202473e
  14. Fornasier, F. and A. Margon. 2007. Bovine serum albumin and Triton X-100 greatly increase phosphomonoesterases and arylsulphatase extraction yield from soil. Soil Biol. Biochem. 39: 2682-2684. https://doi.org/10.1016/j.soilbio.2007.04.024
  15. Koepf, H. H., B. B. Pettersson, and W. Schaumann. 1976. Biodynamic Agriculture. The Anthroposophic Press, Spring Valley, New York.
  16. Mader, P., L. Pfiffner, A. FlieBbach, and U. Niggli. 1995. Biodiversity of soil biota in biodynamic, organic and conventional farming systems, pp. 45-57. In J. Isart and J. J. Llerena (eds.). Biodiversity and Land Use: The Role of Organic Farming. Bonn.
  17. Mader, P., A. Fliessbach, D. Dubois, L. Gunst, P. Fried, and U. Niggli. 2002. Soil fertility and biodiversity in organic farming. Science 296: 1694-1697. https://doi.org/10.1126/science.1071148
  18. Marchesi, J. R., T. Sato, A. J. Weightman, T. A. Martin, J. C. Fry, S. J. Hiom, and W. G. Wade. 1998. Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Appl. Environ. Microbiol. 64: 795-799.
  19. Miller, M. B. and B. L. Bassler. 2001. Quorum sensing in bacteria. Annu. Rev. Microbiol. 55: 165-199. https://doi.org/10.1146/annurev.micro.55.1.165
  20. Nannipieri, P., J. Ascher, M. T. Ceccherini, L. Landi, G. Pietramellara, and G. Renella. 2003. Microbial diversity and soil functions. Eur. J. Soil Sci. 54: 655-670.
  21. Nardi, S., G. Concheri, and G. Dell'Agnola. 1996. Biological activity of humus, pp. 361-406. In A. Piccolo (ed.). Humic Substances in Terrestrial Ecosystems. Elsevier, New York.
  22. Osborn, A. M., E. R. B. Moore, and K. N. Timmis. 2000. An evaluation of terminal-restriction fragment length polymorphism (T-RFLP) analysis for the study of microbial community structure and dynamics. Environ. Microbiol. 2: 39-50. https://doi.org/10.1046/j.1462-2920.2000.00081.x
  23. Rossen, L., C. A. Shearman, A. W. B. Johnston, and J. A. Downie. 1985. The nodD gene of Rhizobium leguminosarum is autoregulatory and in the presence of plant exudate induces the nodABC genes. EMBO J. 4: 3369-3373.
  24. Russo, R. O. and G. P. Berlyn. 1990. The use of organic biostimulants to help low input sustainable agriculture. J. Sustain. Agric. 1: 19-42.
  25. Shaw, P. D., P. Gao, S. L. Daly, C. Cha, J. E. Cronan Jr., K. L. Rinehart, and S. K. Farrand. 1997. Detecting and characterizing N-acyl-homoserine lactone signal molecules by thin-layer chromatography Proc. Natl. Acad. Sci. USA 94: 6036-6041. https://doi.org/10.1073/pnas.94.12.6036
  26. Spaccini, R., P. Mazzei, A. Squartini, M. Giannattasio, and A. Piccolo. 2012. Molecular properties of a fermented manure preparation used as field spray in biodynamic agriculture. Environ. Sci. Pollut. Res. Int. 19: 4214-4225. https://doi.org/10.1007/s11356-012-1022-x
  27. Stearn, W. C. 1976. Effectiveness of two biodynamic preparations on higher plants and possible mechanism s for the observed response. M.S. Thesis, Ohio State Univ., Columbus, OH.
  28. Tejada, M., C. Benitez, I. Gomez, and J. Parrado. 2011. Use of biostimulants on soil restoration: Effects on soil biochemical properties and microbial community. Appl. Soil Ecol. 49: 11-17. https://doi.org/10.1016/j.apsoil.2011.07.009
  29. Tsavkelova, E. A., T. A. Cherdyntseva, S. Y. Klimova, A. I. Shestakov, S. G. Botina, and A. I. Netrusov. 2007. Orchidassociated bacteria produce indole-3-acetic acid, promote seed germination, and increase their microbial yield in response to exogenous auxin. Arch. Microbiol. 188: 655-664. https://doi.org/10.1007/s00203-007-0286-x
  30. Turinek, M., S. Grobelnik-Mlakar, M. Bavec, and F. Bavec. 2009. Biodynamic agriculture research progress and priorities. Renew. Agricult. Food Syst. 24: 146-154. https://doi.org/10.1017/S174217050900252X
  31. Vessey, K. J. 2003. Plant growh promoting rhizobacteria as biofertilizers. Plant Soil 255: 571-586.

Cited by

  1. Plant Growth Promoting Bacteria from Cow Dung Based Biodynamic Preparations vol.54, pp.4, 2013, https://doi.org/10.1007/s12088-014-0468-6
  2. Qualitative discrimination between organic and biodynamic Sangiovese red wines for authenticity vol.6, pp.18, 2013, https://doi.org/10.1039/c4ay00971a
  3. Ação da matéria orgânica e suas frações sobre a fisiologia de hortaliças vol.32, pp.1, 2013, https://doi.org/10.1590/s0102-05362014000100003
  4. Cultivable bacterial diversity and early plant growth promotion by the traditional organic formulations prepared using organic waste materials vol.4, pp.4, 2013, https://doi.org/10.1007/s40093-015-0107-1
  5. Plant biostimulants: physiological responses induced by protein hydrolyzed-based products and humic substances in plant metabolism vol.73, pp.1, 2013, https://doi.org/10.1590/0103-9016-2015-0006
  6. Biostimulants in Plant Science: A Global Perspective vol.7, pp.None, 2013, https://doi.org/10.3389/fpls.2016.02049
  7. Prevention of yield losses caused by glyphosate in soybeans with biostimulant vol.11, pp.18, 2013, https://doi.org/10.5897/ajar2016.10809
  8. Evaluation of the oenological suitability of grapes grown using biodynamic agriculture: the case of a bad vintage vol.120, pp.2, 2016, https://doi.org/10.1111/jam.13004
  9. Rhizosphere Bacterial Communities Differ According to Fertilizer Regimes and Cabbage ( Brassica oleracea var. capitata L.) Harvest Time, but Not Aphid Herbivory vol.9, pp.None, 2013, https://doi.org/10.3389/fmicb.2018.01620
  10. Responses to climatic and pathogen threats differ in biodynamic and conventional vines vol.8, pp.None, 2018, https://doi.org/10.1038/s41598-018-35305-7
  11. Effects of Two Protein Hydrolysates Obtained From Chickpea (Cicer arietinum L.) and Spirulina platensis on Zea mays (L.) Plants vol.10, pp.None, 2013, https://doi.org/10.3389/fpls.2019.00954
  12. Azospirillum ramasamyi sp. nov., a novel diazotrophic bacterium isolated from fermented bovine products vol.69, pp.5, 2013, https://doi.org/10.1099/ijsem.0.003320
  13. Growth responses of garden cress (Lepidium sativum L.) to biodynamic cow manure preparation in a bioassay vol.36, pp.1, 2013, https://doi.org/10.1080/01448765.2019.1644668
  14. Functional microbial diversity responses to biodynamic management in Burgundian vineyard soils vol.36, pp.3, 2013, https://doi.org/10.1080/01448765.2020.1762739
  15. A Rhizogenic Biostimulant Effect on Soil Fertility and Roots Growth of Turfgrass vol.11, pp.3, 2021, https://doi.org/10.3390/agronomy11030573
  16. Aggregate stability and visual evaluation of soil structure in biodynamic cultivation of Burgundy vineyard soils vol.37, pp.3, 2013, https://doi.org/10.1080/01448765.2021.1929480
  17. Manure management and soil biodiversity: Towards more sustainable food systems in the EU vol.194, pp.None, 2013, https://doi.org/10.1016/j.agsy.2021.103251
  18. Wine quality under integrated, organic and biodynamic management using image-forming methods and sensory analysis vol.8, pp.1, 2013, https://doi.org/10.1186/s40538-021-00261-4