DOI QR코드

DOI QR Code

A local-global scheme for tracking crack path in three-dimensional solids

  • Manzoli, O.L. (Department of Civil Engineering, Univ Estadual Paulista - UNESP) ;
  • Claro, G.K.S. (Department of Civil Engineering, Univ Estadual Paulista - UNESP) ;
  • Rodrigues, E.A. (Department of Civil Engineering, Univ Estadual Paulista - UNESP) ;
  • Lopes, J.A. Jr. (Department of Civil Engineering, Univ Estadual Paulista - UNESP)
  • Received : 2012.06.22
  • Accepted : 2013.03.06
  • Published : 2013.09.01

Abstract

This paper aims to contribute to the three-dimensional generalization of numerical prediction of crack propagation through the formulation of finite elements with embedded discontinuities. The analysis of crack propagation in two-dimensional problems yields lines of discontinuity that can be tracked in a relatively simple way through the sequential construction of straight line segments oriented according to the direction of failure within each finite element in the solid. In three-dimensional analysis, the construction of the discontinuity path is more complex because it requires the creation of plane surfaces within each element, which must be continuous between the elements. In the method proposed by Chaves (2003) the crack is determined by solving a problem analogous to the heat conduction problem, established from local failure orientations, based on the stress state of the mechanical problem. To minimize the computational effort, in this paper a new strategy is proposed whereby the analysis for tracking the discontinuity path is restricted to the domain formed by some elements near the crack surface that develops along the loading process. The proposed methodology is validated by performing three-dimensional analyses of basic problems of experimental fractures and comparing their results with those reported in the literature.

Keywords

References

  1. Areias, P.M.A. and Belystschko, T. (2001), "Analysis of three-dimensional crack initiation and propagation using the extended finite element method", Int. J. Numer. Meth. Eng., 50(4), 993-1013. https://doi.org/10.1002/1097-0207(20010210)50:4<993::AID-NME164>3.0.CO;2-M
  2. Blanco, S. (2007), "Contribuciones a la simulacion numerica del fallo material en medios tridimensionales mediante la metodologia de discontinuidades fuertes de continuo", Ph.D. Thesis, Universidad Politecnica de Cataluna, Barcelona, Spain.
  3. Chaves, E.W.V. (2003), "A three dimensional setting for strong discontinuities modeling in failure mechanics", Ph.D. Thesis, Universidad Politecnica de Cataluna, Barcelona, Spain.
  4. Galvez, J.C., Elices, M., Guinea, G.V. and Planas, J. (1998), "Mixed mode fracture of concrete under proportional and non-proportion al loading", Int. J. Fract., 94, 267-284. https://doi.org/10.1023/A:1007578814070
  5. Gasser, T.C. and Holzapfel, G.A. (2006), "3D Crack propagation in unreinforced concrete. A two-step algorithm for tracking 3D crack paths", Comput. Meth. Appl. Mech. Eng., 195, 5198-5219. https://doi.org/10.1016/j.cma.2005.10.023
  6. Hughes, T.J.R. (2000), The Finite Element Method - Linear Static and Dynamic Finite Element Analysis, Ed. Dover, United States of America - Mineola.
  7. Jager, P., Steinmann, P. and Kuhl, E. (2008), "Modeling three-dimensional crack propagation - A comparison of crack path tracking strategies", Int. J. Numer. Meth. Eng., 76, 1328-1352. https://doi.org/10.1002/nme.2353
  8. Manzoli, O.L. (1998), "Un modelo analitico y numerico para La simulacion de discontinuidades fuertes em La mecanica de solidos", Doctoral Thesis, Universidad Politecnica de Cataluna, Barcelona, Spain.
  9. Manzoli, O.L. and SHING, P.B. (2006), "A general technique to embed non-uniform discontinuities into standard solid finite elements", Comput. Struct., 84, 742-757. https://doi.org/10.1016/j.compstruc.2005.10.009
  10. Manzoli, O.L. (2008), Contribuicoes a simulacao numerica de descontinuidades fortes, Tese (Livre Docencia) - Universidade Estadual Paulista "Julio de Mesquita Filho" - Faculdade de Engenharia de Bauru, Bauru, Sao Paulo.
  11. Manzoli, O.L., Rodrigues, E.A., Claro, G.K.S. and Motta, C.E.Q. (2010), "Simulacao do comportamento nao linear de materiais quase-frageis via elementos finitos com fissura embebida", Asociacion Argentina de Mecanica Computacional, 19, 5341-5356.
  12. Melenk, J.M. and Babuska, I. (1996), "Partition of unity finite element method: basic theory and applications", Comput. Meth. Appl. Mech. Eng., 139, 289-314. https://doi.org/10.1016/S0045-7825(96)01087-0
  13. Oliver, J. and Huespe, A.E. (2004), "Continuum approach to material failure in strong discontinuity settings", Comput. Meth. Appl. Mech. Eng., 193, 3195-3220. https://doi.org/10.1016/j.cma.2003.07.013
  14. Oliver, J., Huespe, A.E. and SANCHEZ, P.J. (2006), "A comparative study on finite elements for capturing strong discontinuities", E-FEM vs X-FEM, Comput. Meth. Appl. Mech. Eng., 195, 4732-4752. https://doi.org/10.1016/j.cma.2005.09.020
  15. Oliver, J., Linero, D.L., Huespe, A.E. and ManZori, O.L. (2008), "Two-dimensional modeling of material failure in reinforced concrete by means of a continuum strong discontinuity approach", Comput. Meth. Appl. Mech. Eng., 197, 332-348. https://doi.org/10.1016/j.cma.2007.05.017
  16. Ortiz, M., Leroy, Y. and Needleman, A. (1987), "A finite element method for localized failure analysis", Comput. Meth. Appl. Mech. Eng., 61, 189-214. https://doi.org/10.1016/0045-7825(87)90004-1
  17. Peterson, P.E. (1981), Crack Growth and Development of Fractures Zones in Plain Concrete and Similar Materials, Report n TVBM-1006, Div. Build. Mater., Lund Institute of Technology, Lund, Sweden.

Cited by

  1. On the use of finite elements with a high aspect ratio for modeling cracks in quasi-brittle materials vol.153, 2016, https://doi.org/10.1016/j.engfracmech.2015.12.026
  2. Modeling 3-D desiccation soil crack networks using a mesh fragmentation technique vol.62, 2014, https://doi.org/10.1016/j.compgeo.2014.06.009