DOI QR코드

DOI QR Code

Applications of the ANFIS and LR in the prediction of strain in tie section of concrete deep beams

  • 투고 : 2012.11.04
  • 심사 : 2013.03.06
  • 발행 : 2013.09.01

초록

Recent developments in Artificial Intelligence (AI) and computational intelligence have made it viable in the construction industry and structural analysis. This study usesthe Adaptive Network-based Fuzzy Inference System (ANFIS) as a modelling tool to predict the strain in tie section for High Strength Self Compacting Concrete (HSSCC) deep beams. 3773 experimental data were collected. The input data andits corresponding strains in tie section as output data were recorded at all loading stages. Results from ANFIS are compared with the classical linear regression (LR). The comparison shows that the ANFIS's results are highly accurate, precise and satisfactory.

키워드

참고문헌

  1. Abraham, A. (2005), Rule-based expert systems. In: Sydenham PH, Thorn R Handbook of measuring system design0, Wiley, New York.
  2. ACI Committee 318 (1999), "Building Code Requirements for Structural Concrete (ACI 318-99) and Commentary (318R-99), American Concrete Institute, Farmington Hills, Mich., 391.
  3. Bilgehan, M. (2011), "Comparison of ANFIS and NN models-with a study in critical buckling load estimation", Appl. Soft Comput., 11(4), 3779-3791. https://doi.org/10.1016/j.asoc.2011.02.011
  4. Braestrup, M.W. and Nielsen, M.P. (1983), "Plastic methods of analysis and design", Handbook of Structural Concrete, Eds. Kong, F.K., Evans, R.H., Cohen, E. and Roll, F. Ch.20, Pitman, London.
  5. Canadian Standard Association (2004), "CAN/CSA A23.3-04 Design of Concrete Structure", CSA, Rexdale, Ontario, Canada.
  6. Gerardo, A., Adolfo, B.M., Gustavo, J.P.M., Julio, A.R. and James K.W. (2002), "Experimental evaluation of design procedures for shear strength of deep reinforced concrete beams", ACI Struct. J., 99(4), 539-548.
  7. Hakim, S.J.S., Noorzaei, J., Jaafar, M.S., Jameel, M. and Mohammadhassani, M. (2011), "Application of Artificial Neural Networks to Predict Compressive strength of High Strength Concrete", Int. J. Physic. Sci. (IJPS), 6(5), 975-981.
  8. Herrera, F. and Lozano, M. (2003), "Fuzzy adaptive genetic algorithm: design, taxonomy and future directions", Soft Comput., 7(8), 545-562. https://doi.org/10.1007/s00500-002-0238-y
  9. Jang, J.S.R. (1993),"Adaptive network based fuzzy inference system", IEEE T. Syst. Man Cy., 23(3), 665-685. https://doi.org/10.1109/21.256541
  10. Lali, P. and Setayeshi, S. (2011), "A novel approach to develop the control of telbot using ANFIS for nuclear hotcells", Annal. Nucl. Energy, 38(10), 2156-2162. https://doi.org/10.1016/j.anucene.2011.06.021
  11. Lu, W.Y., Hwang, S.J. and Lin, I.J. (2010), "Deflection prediction for reinforced concrete deep beams", Comput. Concr., 7(1), 1-16. https://doi.org/10.12989/cac.2010.7.1.001
  12. Mahmut, B. (2011), "Comparison of ANFIS and NN models-with a study in critical buckling load estimation", Appl. Soft Comput., 11(4), 3779-3791. https://doi.org/10.1016/j.asoc.2011.02.011
  13. Mamdani, E. and Assilian, S. (1975),"An experiment in linguistic synthesis with a fuzzy logic controller", Int. J. Man. Mach. Stud., 7(1), 1-13. https://doi.org/10.1016/S0020-7373(75)80002-2
  14. Marti, P. (1985), "Truss models in detailing", Concrete Int., 7(12), 66-73.
  15. Mazloumzadeh, S.M., Shamsi, M. and Nezamabadi-pour, H. (2010), "Fuzzy logic to classify date palm trees based on some physical properties related to precision agriculture", Precision Agric, 11(3), 258-273. https://doi.org/10.1007/s11119-009-9132-2
  16. Mohammadhassani, M., Jumaat, M.Z., Jameel, M. and Ashour, A. (2011a), "Failure modes and serviceability of high strength self compacting concrete deep beams", Eng. Fail. Anal., 18(8), 2272-2281. https://doi.org/10.1016/j.engfailanal.2011.08.003
  17. Mohammadhassani, M., Jumaat, M.Z. and Jameel, M. (2012a), "Experimental investigation to compare the modulus of rupture in high strength self compacting concrete deep beams and high strength concrete normal beams", Construct. Build. Mater., 30, 265-273. https://doi.org/10.1016/j.conbuildmat.2011.12.004
  18. Mohammadhassani, M., Jumaat, M.Z., Jameel, M. and Arumugam Arul, M.S. (2012b), "Ductility and performance assessment of high strength self compacting concrete (HSSCC) deep beams: an experimental investigation", Nucl. Eng. Des., 250, 116-124. https://doi.org/10.1016/j.nucengdes.2012.05.005
  19. Mohammadhassani, M., Nezamabadi-pour, H., Jumaat, M.Z., Jameel, M. and Arumugam, A.M.S. (2013a), "Application of Artificial Neural Networks (ANNs) and Linear Regressions (LR) to predict the deflection of concrete deep beams", Comput. Concr., 11(3), 237-252. https://doi.org/10.12989/cac.2013.11.3.237
  20. Mohammadhassani, M., Nezamabadi-pour H., Jumaat, M.Z., Jameel, M. and Sayed Hakim, S.J. (2013b), "Application of ANFIS model in deflection prediction of HSSCC deep beem", Struct. Eng. Mech., 45(3), 319-332.
  21. Nielsen, M.P. (1971), "On the strength of reinforced concrete discs", Civil Engineering and Building Construction Series, No. 70, Acta Polytechnica Scandinavica, Copenhagen.
  22. Oh, J.K. and Shin, S.W. (2001), "Shear strength of reinforced high-strength concrete deep beams", ACI Struct. J., 98(2), 164-173.
  23. Schlaich, J., Schafer, K. and Jennewein, M. (1987), "Towards a consistent design of structural concrete", PCI J., 32(3), 74-150. https://doi.org/10.15554/pcij.05011987.74.150
  24. Takagi, T. and Sugeno, M. (1985), "Fuzzy identification of systems and its applications to modeling and conml", IEEE T. SMC, 35(1), 116-132.
  25. Tan, K., Kong, F., Teng, S. and Weng, L. (1997), "Effect of web reinforcement on high-strength concrete deep beams", ACI Struct. J., 94(5), 572-582.
  26. Yang, K.H., Eun, H.C., Lee, E.T. and Chung H.S. (2003), "Shear characteristics of high strength concrete deep beams without shear reinforcement", Eng. Struct., 25(8), 1343-1352. https://doi.org/10.1016/S0141-0296(03)00110-X
  27. Yang, K.H., Eun, H.C., Lee, E.T. and Chung, H.S. (2006), "The influence of web openings on the structural behaviour of reinforced high-strength concrete deep beams", Eng. Struct., 28(13), 1825-1834. https://doi.org/10.1016/j.engstruct.2006.03.021
  28. Isik, Y. and Oguz, K. (2011), "Multiple regression, ANN (RBF, MLP) and ANFIS models for prediction of swell potential of clayey soils", Exp. Sys. Appl., 38(5), 5958-5966. https://doi.org/10.1016/j.eswa.2010.11.027
  29. Watstein, D. and Mathey, R.G. (1958), "Strains in beams having diagonal cracks", ACI J. 55(12), 717-728.
  30. Wight, J.K. and Gustavo, J.P.M. (2003), "Strut - and-tie model for deep beam design. A practical exercise using Appendix A of the 2002", ACI Building Code.Concrete International.
  31. Zadeh, L.A. (1965), "Fuzzy sets", Inform. Control, 8(3), 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X

피인용 문헌

  1. An evolutionary fuzzy modelling approach and comparison of different methods for shear strength prediction of high-strength concrete beams without stirrups vol.14, pp.5, 2014, https://doi.org/10.12989/sss.2014.14.5.785
  2. Towards achieving the desired seismic performance for hybrid coupled structural walls vol.9, pp.6, 2015, https://doi.org/10.12989/eas.2015.9.6.1251
  3. Potential of adaptive neuro fuzzy inference system for evaluating the factors affecting steel-concrete composite beam's shear strength vol.21, pp.3, 2016, https://doi.org/10.12989/scs.2016.21.3.679
  4. An intelligent based-model role to simulate the factor of safe slope by support vector regression pp.1435-5663, 2019, https://doi.org/10.1007/s00366-018-0677-4
  5. Application of ANFIS technique on performance of C and L shaped angle shear connectors vol.22, pp.3, 2018, https://doi.org/10.12989/sss.2018.22.3.335
  6. Bending analysis of magneto-electro piezoelectric nanobeams system under hygro-thermal loading vol.8, pp.3, 2013, https://doi.org/10.12989/anr.2020.8.3.203