Abstract
Revenue management (RM) has been widely used to model products characterized as perishable. Classical RM model assumed that price is the sole factor in the model. Thus price adjustment becomes a crucial and costly factor in business. In this paper, an optimal pricing model is developed based on minimization of soft customer cost, one kind of price adjustment cost and is solved by Lagrange multiplier method. It is formed by expected discounted revenue/bid price integrating quantity-based RM and pricing-based RM. Quantity-based RM consists of two capacity models, namely, booking limit and overbooking. Booking limit, built by assuming uncertain customer arrival, decides the optimal capacity allocation for two market segments. Overbooking determines the level of accepted order exceeding capacity to anticipate probability of cancellation. Furthermore, pricing-based RM models occupancy/demand rate influenced by internal and competitor price changes. In this paper, a mathematical model based on game theoretic approach is developed for two conditions of deterministic and stochastic demand. Based on the equilibrium point, the best strategy for both hotels can be determined.