DOI QR코드

DOI QR Code

Development of Daily Rainfall Simulation Model Based on Homogeneous Hidden Markov Chain

동질성 Hidden Markov Chain 모형을 이용한 일강수량 모의기법 개발

  • 권현한 (전북대학교 토공공학과, 방재연구센터) ;
  • 김태정 (전북대학교 토목공학과) ;
  • 황석환 (한국건설기술연구원 수자원환경본부) ;
  • 김태웅 (한양대학교 건설환경플랜트공학과)
  • Received : 2013.04.16
  • Accepted : 2013.07.17
  • Published : 2013.09.30

Abstract

A climate change-driven increased hydrological variability has been widely acknowledged over the past decades. In this regards, rainfall simulation techniques are being applied in many countries to consider the increased variability. This study proposed a Homogeneous Hidden Markov Chain(HMM) designed to recognize rather complex patterns of rainfall with discrete hidden states and underlying distribution characteristics via mixture probability density function. The proposed approach was applied to Seoul and Jeonju station to verify model's performance. Statistical moments(e.g. mean, variance, skewness and kurtosis) derived by daily and seasonal rainfall were compared with observation. It was found that the proposed HMM showed better performance in terms of reproducing underlying distribution characteristics. Especially, the HMM was much better than the existing Markov Chain model in reproducing extremes. In this regard, the proposed HMM could be used to evaluate a long-term runoff and design flood as inputs.

최근 기후변화 영향으로 인해 수문변동성이 크게 증가되고 있으며 이러한 변동성을 고려하기 위한 방안으로서 강수량 모의발생 기법에 대한 중요성이 대두되고 있다. 본 연구에서는 복잡한 강수발생 패턴을 인지하고 강수량의 다양한 분포특성을 고려할 수 있는 혼합분포를 이용한 동질성 Hidden Markov Chain(HMM) 모형을 제안하였다. HMM 모형의 개선효과를 검증하기 위해서 기존 Markov Chain 모형과 비교 하였으며 서울관측소 및 전주관측소를 대상으로 연구를 진행하였다. 계절강수량 및 일강수량 등 다양한 시간규모에서 모형의 적합성을 평가하기 위해서 천이확률, 평균, 분산, 왜곡도 및 첨예도 등을 비교하였으며 HMM 모형이 기존 Markov Chain 모형에 비해서 개선된 모의능력을 확인할 수 있었다. 특히, HMM 모형은 극치강수량을 재현하는데 있어서 기존 Markov Chain 모형에 비해서 월등한 모의능력을 보여주었다. 이러한 점에서 장기유출량 및 확률홍수량 등을 산정하기 위한 입력자료로 활용이 충분히 가능할 것으로 판단된다.

Keywords

References

  1. Kim, B. S., Kang, K. S. and Seoh, B. H. (1999). "Low flow frequency analysis of streamflows from the stochastically generated daily rainfall series." Journal of Korean Water Resources Association, Vol. 32, No. 3, pp. 265-279.
  2. Bellone, E., Hughes, J. P. and Guttorp, P. (2000). "A hidden markov model for downscaling synoptic atmospheric patterns to precipitation amounts." Climate Research, Vol. 15, pp. 1-12. https://doi.org/10.3354/cr015001
  3. Haan, C. T., Allen, D. M. and Street, J. O. (1976). "A markov chain model of daily rainfall." Water Resour. Res., Vol. 12, No. 3, pp. 443-449. https://doi.org/10.1029/WR012i003p00443
  4. Hughes, J. P. and Guttorp. P. (1994). "A class of stochastic models for relating synoptic atmospheric patterns to regional hydrologic phenomena." Water Resour. Res., Vol. 30, No. 5, pp. 1535-1546. https://doi.org/10.1029/93WR02983
  5. Kwon, H. H. and Kim, B. S. (2009). "Development of statistical dwonscaling model using nonstationary markov chain." Journal of Korean Water Resources Association, Vol. 42, No. 3, pp. 213-225. https://doi.org/10.3741/JKWRA.2009.42.3.213
  6. Kwon, H.-H., Kim, J.-G. and Park, S.-H. (2013) "Derivation of flood frequency curve with uncertainty of rainfall and rainfallrunoff model." Journal of Korean Water Resources Association, Vol. 46 No. 1, pp. 59-71. https://doi.org/10.3741/JKWRA.2013.46.1.59
  7. Jung Y. H., Yi, C. S., Kim, H. S. and Shim, M. P. (2005). "Estimation of needed discharge considering frequency based low flow in gabcheon basin." Journal of Korean Society of Civil Engineer, Vol. 25, No. 2, pp. 97-105.
  8. Heo, J.-H. (1997). "Introduction to statistical hydrology(v)." Journal of Korean Water Resources Association, Vol. 30 No. 1, pp. 88-96.
  9. Katz, R. W. (1996). "Use of conditional stochastic models to generate climate change scenarios." Climate. Change, Vol. 32, pp. 237-255. https://doi.org/10.1007/BF00142464
  10. Kwon, H.-H. and So, B.-J. (2011). "Development of daily rainfall simulation model using piecewise kernel-pareto continuous distribution." Journal of Korean Society of Civil Engineer, Vol. 31, No. 3B, pp. 277-284.
  11. Kwon, H.-H., Lall, U. and Obeysekera, J. (2009). "Simulation of daily rainfall scenarios with interannual and multidecadal climate cycles for south florida." Stochastic Environmental Research and Risk Assessment, Vol. 23, No. 7, pp. 879-896. https://doi.org/10.1007/s00477-008-0270-2
  12. Lee, C. H. and Kim, S. (1995). "Estimation of mean annual and monthly precipitations in south korea by the regression analysis." Journal of Korean Society of Civil Engineer, Vol. 15, No. 5, pp. 1255-1266.
  13. Nord, J. (1975). "Some applications of markov chains, proceedings fourth conference on probability and statistics in atmospheric science." Tallahas, pp.125-130.
  14. Wilks, D. S. (1992). "Adapting stochastic weather generation algorithms for climate change studies." Climate Change, Vol. 22, pp. 67-84. https://doi.org/10.1007/BF00143344
  15. Bengio, Y. and Frasconi, P. (1995). "Diffusion of context and credit information in markov chain models." Journal of Artificial Intelligence Research, Vol. 6, No. 95, pp. 249-270.

Cited by

  1. Drought Frequency Analysis Using Hidden Markov Chain Model and Bivariate Copula Function vol.48, pp.12, 2015, https://doi.org/10.3741/JKWRA.2015.48.12.969
  2. A development of multisite hourly rainfall simulation technique based on neyman-scott rectangular pulse model vol.49, pp.11, 2016, https://doi.org/10.3741/JKWRA.2016.49.11.913
  3. Probabilistic Assessment of Drought Characteristics based on Homogeneous Hidden Markov Model vol.34, pp.1, 2014, https://doi.org/10.12652/Ksce.2014.34.1.0145
  4. Probabilistic Assessment of Hydrological Drought Using Hidden Markov Model in Han River Basin vol.47, pp.5, 2014, https://doi.org/10.3741/JKWRA.2014.47.5.435
  5. Parameter Estimation of the Mixture Normal Distribution for Hydro-Meteorological Variables using Meta-Heuristic Maximum Likelihood vol.14, pp.4, 2014, https://doi.org/10.9798/KOSHAM.2014.14.4.93
  6. Development of Stochastic Downscaling Method for Rainfall Data Using GCM vol.47, pp.9, 2014, https://doi.org/10.3741/JKWRA.2014.47.9.825
  7. Development of Multisite Spatio-Temporal Downscaling Model for Rainfall Using GCM Multi Model Ensemble vol.35, pp.2, 2015, https://doi.org/10.12652/Ksce.2015.35.2.0327
  8. Assessment of Typhoon Trajectories and Synoptic Pattern Based on Probabilistic Cluster Analysis for the Typhoons Affecting the Korean Peninsula vol.47, pp.4, 2014, https://doi.org/10.3741/JKWRA.2014.47.4.385