DOI QR코드

DOI QR Code

Implementation of 1.7MHz, 25W Wireless Power Transmission(WPT) System using Coupled Magnetic Resonance

1.7MHz, 25W급 자기공명 무선전력 전송 시스템 구현

  • Kim, Seong-Min (Radio Technology Research Dept., Electronics and Telecommunications Research Institute) ;
  • Cho, In-Gui (Radio Technology Research Dept., Electronics and Telecommunications Research Institute) ;
  • Moon, Jung-Ick (Radio Technology Research Dept., Electronics and Telecommunications Research Institute)
  • Received : 2013.08.19
  • Accepted : 2013.09.11
  • Published : 2013.09.30

Abstract

In this paper, 25W wireless power transmission(WPT) system using the coupled magnetic resonance is presented. The WPT system consists of a 100W class-F power transmitter, 1.7MHz magnetic resonators and a 40W full-bridge receiver using diodes. Especially, the transmit power control function using the 400MHz FSK communication between the transmitter and the receiver is adopted in the proposed system for the stable power transmission. Using the system and the power control function, the WPT system can be adopted in the various electronic devices and the commercialization of WPT system can be moved forward.

본 논문에서는 자기공명 방식을 이용한 25W급 무선전력 전송 시스템을 설계 및 구현하는 것을 제안하고 있다. 본 논문에서 제안하는 자기공명 방식 무선전력 전송 시스템은 100W급 Class-F 송신기, 1.7MHz대역의 송수신 공진기, 40W급 Full-bridge 다이오드 수신기로 구성되어 있다. 특히 제안된 시스템은 수신기에 전달되는 전력이 부하를 구동할 수 있는 적정레벨로 유지될 수 있도록 송신기와 수신기 사이의 통신을 이용한 송신전력제어 기능을 구현하여 송신기가 최적의 전력을 송신하여 불필요한 전력 낭비를 줄일 수 있도록 구현되었다. 본 논문에서 제안된 시스템 및 송신전력 제어기능을 기반으로 다양한 기기에 동일한 기능의 적용이 가능하며 상용화에 보다 근접할 수 있을 것이다.

Keywords

References

  1. Andre Kurs, Arsteidis Karalis, Robert Moffatt, John Joannpoulos, Peter Fisher, Marin Soljacic, "Wireless Power Transfer via Strongly Coupled Magnetic Resonances," Science Magazine, vol. 317, no.5834, pp. 83-86, 2007.
  2. S.W. Choi and M.H. Lee, "Coil-Capacitor Circuit Design of a Transcutaneous Energy Transmission System to Deliver Stable Electric Power," ETRI Journal, vol. 30, no. 6, December 2008 https://doi.org/10.4218/etrij.08.0108.0321
  3. J. Heikkinen, and M. Kivikoski, "Low-profile circularly polarized retifying antenna for wireless power transmission at 5.8 GHz," IEEE Microwave and wireless components letters vol. 14, no.4, pp. 162-164, 2004. https://doi.org/10.1109/LMWC.2004.827114
  4. J. Murakami, F. Sato, T. Watanabe, H. Matsuki, S. Kikuchi, K. Harakaiwa, and T. Satoh, "Consideration on cordless power station-Contactless power transmission system," IEEE Trans. Magn., vol. 32, pp.5017-5019, September 1996.
  5. Tianliang Yang, Chunyu Zhao, and Dayue Chen / Shanghai Jiao Tong University, China, "Feedback Analysis of Transcutaneous Energy Transmission with a Variable Load Parameter," ETRI Journal, vol. 32, no. 4, August 2010 https://doi.org/10.4210/etrij.10.0109.0553
  6. Alanson P. S., "Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer," IEEE Trans. On Industrial Electronics, vol. 58, no.2, pp. 544-554, 2011. https://doi.org/10.1109/TIE.2010.2046002
  7. ICNIRP, "Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields," ICNIRP, vol.74, no.4, pp. 511-512, 1998.
  8. Advanced Techniques in RF Power Amplifier Design, Steve C. Cripps, Artech House, 2002.
  9. W. J. Byun, B. S. Kim, K. S. Kim, et al., "40 GHz Vertical Transition with a Dual-Mode Cavity for a Low-Temperature Co-fired Ceramic Transceiver Module," ETRI Journal, vol. 32, no. 2, pp. 195-203, April 2010. https://doi.org/10.4218/etrij.10.1409.0091

Cited by

  1. Design and Implementation of Wireless Power Transfer System for a Personal Rapid Transit (PRT) Vehicle vol.12, pp.11, 2014, https://doi.org/10.14400/JDC.2014.12.11.289