DOI QR코드

DOI QR Code

Comparative Modeling of Low Temperature Char-CO2 Gasification Reaction of Drayton Coal by Carbon Dioxide Concentration

이산화탄소 농도에 따른 드레이톤 탄의 저온 차-이산화탄소 가스화반응 모델링 비교

  • Park, Ji Yun (Graduate School of Green Energy Technology, Chungnam National University) ;
  • Lee, Do Kyun (Graduate School of Green Energy Technology, Chungnam National University) ;
  • Hwang, Soon Cheol (Department of Applied Chemistry and Biological Engineering, Chungnam National University) ;
  • Kim, Sang Kyum (Department of Applied Chemistry and Biological Engineering, Chungnam National University) ;
  • Lee, Sang Heon (Graduate School of Green Energy Technology, Chungnam National University) ;
  • Yoon, Soo Kyung (Department of College of Engineering, Hanyang University) ;
  • Yoo, Ji Ho (Clean Coal Center, Korea Institute of Energy Research) ;
  • Lee, Si Hyun (Clean Coal Center, Korea Institute of Energy Research) ;
  • Rhee, Young Woo (Department of Applied Chemistry and Biological Engineering, Chungnam National University)
  • 박지윤 (충남대학교 녹색에너지기술전문대학원) ;
  • 이도균 (충남대학교 녹색에너지기술전문대학원) ;
  • 황순철 (충남대학교 일반대학원 바이오응용화학과) ;
  • 김상겸 (충남대학교 일반대학원 바이오응용화학과) ;
  • 이상헌 (충남대학교 녹색에너지기술전문대학원) ;
  • 윤수경 (한양대학교 공과대학) ;
  • 유지호 (한국에너지기술연구원 청정연료연구단) ;
  • 이시훈 (한국에너지기술연구원 청정연료연구단) ;
  • 이영우 (충남대학교 일반대학원 바이오응용화학과)
  • Received : 2013.05.07
  • Accepted : 2013.06.05
  • Published : 2013.09.30

Abstract

We investigated the effects of the concentration of carbon dioxide on the char-$CO_2$ gasification reaction under isothermal conditions of $850^{\circ}C$ using the Drayton coal. Potassium carbonate was used to improve the low-temperature gasification reactivity. The enhancement of carbon dioxide concentration increased the gasification rate of char, while gasification rate reached a saturated value at the concentration of 70%. The best $CO_2$ concentration for gasification is determined to be 70%. We compared the shrinking core model (SCM), volumetric reaction model (VRM) and modified volumetric reaction model (MVRM) of the gas-solid reaction models. The correlation coefficient values, by linear regression, of SCM are higher than that of VRM at low concentration. While the correlation coefficients values of VRM are higher than that of SCM at high concentration. The correlation coefficient values of MVRM are the highest than other models at all concentration.

드레이톤 탄으로부터 제조된 차(char)의 $850^{\circ}C$ 등온조건 가스화 반응에서 반응기체인 이산화탄소-질소 혼합기체의 이산화탄소 농도가 반응속도에 미치는 영향에 대해 알아보았다. 저온 가스화 반응성을 높이기 위해 탄산칼륨을 사용하였다. 이산화탄소의 농도가 증가할수록 차-이산화탄소(char-$CO_2$) 가스화 반응성은 좋으며 전환율 증가 속도는 고농도에서는 일정하게 유지되었다. 가스화 반응성은 증가하였으며, 70% 이상의 고농도 조건에서는 일정하게 유지되었다. 기-고체 반응모델 중에서 shrinking core model (SCM)과 shrinking core model (SCM), modified volumetric reaction model (MVRM)을 비교하였다. 선형 회귀를 통해 얻은 상관계수 값은 저농도에서는 SCM이 VRM보다 높은 반면, 고농도에서는 VRM이 SCM보다 높은 값을 보였다. 모든 농도에서 MVRM의 상관계수 값은 다른 모델들 보다 가장 높은 값을 보였다.

Keywords

References

  1. IEA, "World Energy Outlook," International Energy Agency, (2011).
  2. Ochoa, J. Cassanello, M. C, Bonelli, P. R., and Cukierman, A. L., "$CO_2$ Gasification of Argentinean Coal Chars: a Kinetic Characterization," Fuel Process Technol., 74(3), 161-176 (2001). https://doi.org/10.1016/S0378-3820(01)00235-1
  3. Ye, D. P., Agnew, J. B., and Zhang, D. K., "Gasification of a South Australian Low-rank Coal with Carbon Dioxide and Steam: Kinetics and Reactivity Studies," Fuel, 77, 1209-1219 (1998). https://doi.org/10.1016/S0016-2361(98)00014-3
  4. Trommer, D., and Steinfeld, A., "Kinetic Modeling for the Com-bined Pyrolysis and Steam Gasification of Petroleum Coke and Experimental Determination of the Rate Constants by Dynamic Thermogravimetry in the 500-1520 K Range," Energy Fuels, 20(3), 1250-1258 (2006). https://doi.org/10.1021/ef050290a
  5. Sun, Z. Q., Wu, i. H., and Zhang, D., "$CO_2\;and\;H_2O$ Gasification Kinetics of a Coal Char in the Presence of Methane," Energy Fuels, 22(4), 2160-2165 (2008). https://doi.org/10.1021/ef8000949
  6. Miura, K., Hashimoto, K., and Silveston, P. L., "Factors Affecting the Reactivity of Coal Chars During Gasification, and Indices Representing Reactivity," Fuel, 68(11), 1461-1475 (1989). https://doi.org/10.1016/0016-2361(89)90046-X
  7. Kasaoka, S., Sakata, Y., and Tong, C., "Kinetic Evaluation of the Reactivity of Various Coal Chars for Gasification with Carbon Dioxide in Comparison with Steam," Int. Chem. Eng., 25(1), 160-175 (1985).
  8. Fujikawa, K. Hayashi, A., Tanaka, H., Kanazuka, T., Kanno, T., and Kodera, T., "Catalytic Gasification of Carbon: Method for the Determination of the Activity of Alkali Metal Catalysts in the Gasification of Highly Pure Amorphous and Graphitic Carbons with Steam," Appl. Catal., 50(1), 199-210 (1989). https://doi.org/10.1016/S0166-9834(00)80836-2
  9. Hashimoto, K., Miura, K., Xu, J. J., Watanabe, A., and Masukami, H., "Relation Between the Gasification Rate of Carbons Supporting Alkali Metal Salts and the Amount of Oxygen Trapped by the Metal," Fuel, 65(4), 489-494 (1986). https://doi.org/10.1016/0016-2361(86)90038-4
  10. Sha, X. Z., Kyotani, T., and Tomita, A, "Rate Retardation Phenomenon During Gasification of Wandoan Coal Char," Fuel, 69(12), 1564-1567 (1990). https://doi.org/10.1016/0016-2361(90)90208-8
  11. Wen, C. Y., "Noncatalytic Heterogeous Solid Fluid Reaction Models," Ind. Eng. Chem., 60(9), 34-54 (1968)
  12. Gavalas, G. R., "A Random Capillary Model with Application to Char Gasification at Chemically Controlled Rates," Am. Inst. Chem. Eng. J., 26(4), 577-585 (1980). https://doi.org/10.1002/aic.690260408
  13. Song, B. H., Kang, S. K., and Kim, S. D., "Catalytic Activity of K-Fe, Na-Fe, Na-Fe-Ca Mixtures on Char-steam Gasification," Korean J. Chem. Eng., 30(6), 749-759 (1992).
  14. Guzman, G. L., and Wolf, E. E., "Kinetics of the Potassium Carbonate-catalyzed Steam Gasification of Carbon and Coal," Ind. Eng. Chem. Process Des. Dev., 21(1), 25-29 (1982). https://doi.org/10.1021/i200016a005
  15. Lee, W. J., and Kim, S. D., "Catalytic Activity of Alkali and Transition Metal Salt Mixtures for Steam-Char Gasification," Fuel, 74(9), 1387-1393 (1995). https://doi.org/10.1016/0016-2361(95)00081-F
  16. Mochida, I., and Sakanishi, K., "Catalysts for Coal Conversions of the Next Generation," Fuel, 79, 221-228 (2000). https://doi.org/10.1016/S0016-2361(99)00155-6
  17. Probstein, R. F., and Hicks, R. E., Synthetic fuels, Dover Publications: Incorporated, 2006.
  18. Spiro, C. L., McKee, D. W., Kosky, P. G., and Lamby, E. J., "Catalytic $CO_2$-gasification of Graphite Versus Coal Char," Fuel, 62(2), 180-184 (1983). https://doi.org/10.1016/0016-2361(83)90194-1
  19. Walker, P. L., Jr., Shelef, M., and Anderson, R. A., In Chemistry and Physics of Carbon, P.L. Walker, Jr., Ed., Vol. 4, Marcel Dekker, New York, N.Y., 1968, pp. 287-383.
  20. McKee, D. W., "Gasification of Graphite in Carbon Dioxide and Water Vapor-the Catalytic Effects of Alkali Metal Salts," Carbon, 20(1), 59-66 (1982). https://doi.org/10.1016/0008-6223(82)90075-6
  21. Sams, D. A., Talverdian, T., and Shadman, F., "Kinetics of Catalyst Loss During Potassium-catalysed $CO_2$ Gasification of Carbon," Fuel, 64(9), 1208-1214 (1985). https://doi.org/10.1016/0016-2361(85)90176-0
  22. Li, S., and Cheng, Y., "Catalytic Gasification of Gas-coal Char in $CO_2$," Fuel, 74(3), 456-458 (1995). https://doi.org/10.1016/0016-2361(95)93482-S
  23. Ishida, M., and Wen, C. Y., "Comparison of Kinetic and Diffusional Model for Solid-gas Reactions," Am. Inst. Chem. Eng. J., 14(2), 311-317 (1968) https://doi.org/10.1002/aic.690140218
  24. Wen, W. Y., "Mechanisms of Alkali Metal Catalysis in the Gasification of Coal, Char, or Graphite," Catal. Rev.-Sci. Eng., 22(1), 1-28 (1980). https://doi.org/10.1080/03602458008066528
  25. Wood, B. J., Fleming, R. H., and Wise, H., "Reactive Intermediate in the Alkali-Carbonate-Catalysed Gasification of Coal Char," Fuel, 63(11), 1600-1603 (1984). https://doi.org/10.1016/0016-2361(84)90234-5
  26. McKee, D. W., "Mechanisms of the Alkali Metal Catalysed Gasification of Carbon," Fuel, 62(2), 170-175 (1983). https://doi.org/10.1016/0016-2361(83)90192-8
  27. Kim, J. R., Kwon, T. W., and Kim, S. D., "Effect of Catalyst on Lignite Char-steam Gasification Reaction," Korean Chem. Eng. Res., 25(4), 379-385 (1987).
  28. Choi, Y. K., Moon, S. H., Lee, H. I., Lee, W. Y., and Rhee, H. K., "Kinetics of Non-catalytic Steam Gasification of Various Coal Chars under Isothermal Condition," Korean Chem. Eng. Res., 30(3), 292-302 (1992)
  29. Lee, I. C. "Reactivity of Coal-steam Gasification at High Temperature," Korean J. of Chem. Eng., 4(2), 194-200 (1987). https://doi.org/10.1007/BF02697437
  30. Hippo, E. J., Jenkins, R. G., and Walker, P. L., "Enhancement of Lignite Char Reactivity to Steam by Cation Addition," Fuel, 58(5), 338-344 (1979). https://doi.org/10.1016/0016-2361(79)90150-9
  31. Choi, Y. K., Moon S. H., Lee H. I., Lee W. Y., and Rhee H. K., "Kinetics of Non-catalytic Steam Gasification of Various Coal Chars under Isothermal Condition," Korean Chem. Eng. Res., 30(3), 292-302 (1992)
  32. Bak, Y. C., Yang, H. S., and Son, J. E., "Isothermal Coal Char Combustion and Char-steam Gasification Reactivity," J. Korean Inst. Chem. Eng., 29(3), 323-335 (1991).
  33. Bhatia, S. K., and Perlmutter, D. D., "A Random Pore Model for Fluid-Solid Reactions: I. Isothermal, Kinetic Control," Am. Inst. Chem. Eng. J., 26(3), 379-385 (1980). https://doi.org/10.1002/aic.690260308
  34. Dutta, S., Wen, C. Y., and Belt, R. J., "Reactivity of Coal and Char. 1. In Carbon Dioxide Atmosphere," Ind. Eng. Chem., Process Des. Dev., 16(1), 20-30 (1977). https://doi.org/10.1021/i260061a004
  35. Ergun, S., "Kinetics of the Reaction of Carbon with Carbon Dioxide," J. Phys. Chem., 60(4), 480-485 (1956). https://doi.org/10.1021/j150538a022
  36. Ahn, D. H., Gibbs, B. M., Ko, K. H., and Kim, J. J., "Gasification Kinetics of an Indonesian Sub-bituminous Coal-char with $CO_2$ at Elevated Pressure," Fuel, 80(11), 1651-1658 (2001). https://doi.org/10.1016/S0016-2361(01)00024-2
  37. Zhang, L., Huang, J., Fang, Y., and Wang, Y., "Gasification Reactivity and Kinetics of Typical Chinese Anthracite Chars with Steam and $CO_2$," Energy Fuels, 20(3), 1201-1210 (2006). https://doi.org/10.1021/ef050343o
  38. Yasyerli, N., Dogu, T., Dogu, T., and Ar, I., "Deactivation Model for Textural Effects of Kinetics of Gas-solid Noncatalytic Reactions "Char Gasification with $CO_2$," Chem. Eng. Sci., 51(11), 2523-2528 (1996). https://doi.org/10.1016/0009-2509(96)00104-2
  39. Zhang, L., Huang, J., Fang, Y., and Wang, Y., "Gasification Reactivity and Kinetics of Typical Chinese Anthracite Chars with Steam and $CO_2$," Energy Fuels, 20(3), 1201-1210 (2006). https://doi.org/10.1021/ef050343o
  40. Choi, Y. K., Moon, S. H., Lee, H. I., Lee, W. Y., and Rhee, H. K., "Kinetics of Non-catalytic Steam Gasification of Various Coal Chars under Isothermal Condition," Korean Chem. Eng. Res., 30(3), 292-302 (1992)
  41. Fung, D. P. C., and Kim, S. D., "Gasification Kinetics of Coals and Wood," Korean J. Chem. Eng., 7(2), 109-114 (1990). https://doi.org/10.1007/BF02705055
  42. Souza-Santos, M. L., "Comprehensive Modelling and Simulation of Fluidized Bed Boilers and Gasifiers," Fuel, 68(12), 1507-1521 (1989). https://doi.org/10.1016/0016-2361(89)90288-3
  43. Song, B. H., and Kim, S. D., "Catalytic Activity of Alkali and Iron Salt Mixtures for Steam-char Gasification," Fuel, 72(6), 797-803 (1993). https://doi.org/10.1016/0016-2361(93)90083-E

Cited by

  1. Kinetic Study on Low-Rank Coal Char: Characterization and Catalytic CO2 Gasification vol.142, pp.3, 2016, https://doi.org/10.1061/(ASCE)EY.1943-7897.0000294
  2. Kinetic of Catalytic CO2Gasification for Cyprus Coal by Gas-Solid Reaction Model vol.53, pp.5, 2015, https://doi.org/10.9713/kcer.2015.53.5.653
  3. Study on CO2-Coal Gasification Reaction Using Natural Mineral Catalysts vol.27, pp.1, 2016, https://doi.org/10.14478/ace.2015.1122
  4. Reactivity Study on the Kideco Coal Catalytic Coal Gasification under CO2Atmosphere Using Gas-Solid Kinetic Models vol.21, pp.1, 2015, https://doi.org/10.7464/ksct.2015.21.1.053
  5. Kinetic Study of Coal/Biomass Blended Char-CO2Gasification Reaction at Various temperature vol.53, pp.6, 2015, https://doi.org/10.9713/kcer.2015.53.6.746
  6. Kinetic Study on Char-CO2Catalytic Gasification of an Indonesian lignite vol.52, pp.4, 2014, https://doi.org/10.9713/kcer.2014.52.4.544
  7. A study on the direct catalytic steam gasification of coal for the bench-scale system vol.34, pp.10, 2017, https://doi.org/10.1007/s11814-017-0167-1
  8. Performance study of pyrolysis of Indonesian low rank coal using a thermogravimetric analyzer and bubble fluidized-bed reactor vol.11, pp.2, 2016, https://doi.org/10.1002/apj.1960
  9. CO 합성을 위한 저급석탄-CO2 촉매 가스화 반응 vol.33, pp.3, 2013, https://doi.org/10.12925/jkocs.2016.33.3.466
  10. 고정층 반응기에서의 저등급 석탄 혼합촉매가스화 반응특성 vol.55, pp.1, 2013, https://doi.org/10.9713/kcer.2017.55.1.99