DOI QR코드

DOI QR Code

Effect of Reduced Graphite Oxide as Substrate for Zinc Oxide to Hydrogen Sulfide Adsorption

  • Jeon, Nu Ri (Graduate School of Green Energy Technology, Chungnam National University) ;
  • Song, Hoon Sub (Department of Chemical Engineering, University of Waterloo) ;
  • Park, Moon Gyu (Department of Chemical Engineering Education, Chungnam National University) ;
  • Kwon, Soon Jin (Graduate School of Green Energy Technology, Chungnam National University) ;
  • Ryu, Ho Jeong (Korea Institute of Energy Research) ;
  • Yi, Kwang Bok (Department of Chemical Engineering Education, Chungnam National University)
  • Received : 2013.08.01
  • Accepted : 2013.09.02
  • Published : 2013.09.30

Abstract

Zinc oxide (ZnO) and reduced graphite oxide (rGO) composites were synthesized and tested as adsorbents for the hydrogen sulfide ($H_2S$) adsorption at mid-to-high (300 to $500^{\circ}C$) temperatures. In order to investigate the critical roles of oxygen containing functional groups, such as hydroxyl, epoxy and carboxyl groups, attached on rGO surface for the $H_2S$ adsorption, various characterization methods (TGA, XRD, FT-IR, SEM and XPS) were conducted. For the reduction process for graphite oxide (GO) to rGO, a microwave irradiation method was used, and it provided a mild reduction environment which can remain substantial amount of oxygen functional groups on rGO surface. Those functional groups were anchoring and holding nano-sized ZnO onto the 2D rGO surface; and it prevented the aggregation effect on the ZnO particles even at high temperature ranges. Therefore, the $H_2S$ adsorption capacity had been increased about 3.5 times than the pure ZnO.

ZnO(산화아연)와 rGO(환원 흑연산화물, reduced graphite oxide)로 구성된 복합체를 제조하여 중저온 영역($300-500^{\circ}C$)에서 $H_2S$(황화수소) 흡착실험을 수행하였다. rGO에 붙어있는 수산화기, 에폭시기, 그리고 카르복실기와 같은 산소를 포함하는 관능기들이 $H_2S$흡착에 미치는 영향을 조사하기 위해서 다양한 특성분석(TGA, XRD, FT-IR, SEM, 그리고 XPS)을 실시하였다. GO(흑연산화물, graphite oxide)를 rGO로 환원시키기 위해서 마이크로파 조사법을 사용하였다. 마이크로파 조사법에 의한 환원공정에서는 온화한 환원분위기를 조성하여 rGO 표면에 상당량의 산소 관능기들이 남아있는 것을 확인하였다. 이러한 관능기들은 나노 크기의 ZnO가 2D rGO 표면에 균일하게 부착되도록 유도하여 고온 영역에서도 ZnO의 응집 및 소결이 일어나는 것을 방지하는 효과가 있다. 이로 인해 ZnO/rGO 복합체는 순수한 ZnO와 비교하여 3.5배 정도의 흡착량을 보여주었다.

Keywords

References

  1. J. A. Rodriguez, and A. Maiti, "Adsorption and Decomposition of $H_2S$ on MgO(100), NiMgO(100), and ZnO(0001) Surfaces: A First-principles Density Functional Study," J. Phys. Chem. B, 104, 3630-3638 (2000). https://doi.org/10.1021/jp000011e
  2. A. Samokhvalov, and B. J. Tatarchuk, "Characterization of Active Sites, Determination of Mechanisms of $H_2S$, COS and $CS_2$ Sorption and Regeneration of ZnO Low-temperature Sorbents: Past, Current and Perspectives," Phys. Chem. Chem. Phys., 13, 3197-3209 (2011). https://doi.org/10.1039/c0cp01227k
  3. C. L. Garcia, and J. a. Lercher, "Adsorption of Hydrogen Sulfide on ZSM 5 Zeolites," J. Phys. Chem., 96, 2230-2235 (1992). https://doi.org/10.1021/j100184a038
  4. H. G. Karge, and R. Janos, "Hydrogen Sulfide Adsorption on Faujasite-type Zeolites with Systematically Varied Si-Al Ratios," J. Colloid Interface Sci., 64, 522-532 (1978). https://doi.org/10.1016/0021-9797(78)90394-6
  5. J. P. Wakker, A. W. Gerritsen, and J. A. Moulijn, "High Temperature $H_2S$ and COS Removal with MnO and FeO on y-$Al_2O_3$ Acceptors," Ind. Eng. Chem. Res., 32, 139-149 (1993). https://doi.org/10.1021/ie00013a019
  6. T.-H. Ko, H. Chu, and L.-K. Chaung, "The Sorption of Hydrogen Sulfide from Hot Syngas by Metal Oxides over Supports," Chemosphere, 58, 467-74 (2005). https://doi.org/10.1016/j.chemosphere.2004.09.029
  7. P. Dhage, A. Samokhvalov, D. Repala, E. C. Duin, M. Bowman, and B. J. Tatarchuk, "Copper-promoted ZnO/$SiO_2$ Regenerable Sorbents for the RoomTemperature Removal of $H_2S$ from Reformate Gas Streams," Ind. Eng. Chem. Res., 49, 8388-8396 (2010). https://doi.org/10.1021/ie100209a
  8. M. V Twigg, and M. S. Spencer, "Deactivation of Copper Metal Catalysts for Methanol Decomposition, Methanol Steam Reforming and Methanol Synthesis," Top. Catal., 22, 191-203 (2003). https://doi.org/10.1023/A:1023567718303
  9. S. Lew, K. Jothimurugesan, and M. Flytzani-Stephanopoulos, "High-temperature $H_2S$ Removal from Fuel Gases by Regenerable Zinc Oxide-Titanium Dioxide Sorbents," Ind. Eng. Chem. Res., 28, 535-541 (1989). https://doi.org/10.1021/ie00089a006
  10. X. Y. Kong, Y. Ding, and Z. L. Wang, "Metal-semiconductor Zn-ZnO Core-shell Nanobelts and Nanotubes," J. Phys. Chem. B, 108, 570-574 (2004). https://doi.org/10.1021/jp036993f
  11. S. Park, J. An, I. Jung, R. D. Piner, S. J. An, X. Li, A. Velamakanni, and R. S. Ruoff, "Colloidal Suspensions of Highly Reduced Graphene Oxide in a Wide Variety of Organic Solvents," Nano Lett., 9, 1593-1597 (2009). https://doi.org/10.1021/nl803798y
  12. M. D. Stoller, S. Park, Y. Zhu, J. An, and R. S. Ruoff, "Graphene-based Ultracapacitors," Nano Lett., 8, 3498-3502 (2008). https://doi.org/10.1021/nl802558y
  13. N. Li, G. Liu, C. Zhen, F. Li, L. Zhang, and H.-M. Cheng, "Battery Performance and Photocatalytic Activity of Mesoporous Anatase $TiO_2$ Nanospheres/Graphene Composites by Template-free Self-assembly," Adv. Funct. Mater., 21, 1717-1722 (2011). https://doi.org/10.1002/adfm.201002295
  14. J. K. Lee, K. B. Smith, C. M. Hayner, and H. H. Kung, "Silicon Nanoparticles-graphene Paper Composites for Li Ion Battery Anodes," Chem. Commun., 46, 2025-2027 (2010). https://doi.org/10.1039/b919738a
  15. Y. Zhu, S. Murali, M. D. Stoller, K. J. Ganesh, W. Cai, P. J. Ferreira, A. Pirkle, R. M. Wallace, K. a Cychosz, M. Thommes, D. Su, E. A. Stach, and R. S. Ruoff, "Carbon-based Supercapacitors Produced by Activation of Graphene," Science, 332, 1537-1541 (2011). https://doi.org/10.1126/science.1200770
  16. M. Seredych, and T. J. Bandosz, "Reactive Adsorption of Hydrogen Sulfide on Graphite Oxide/$Zr(OH)_4$ Composites," Chem. Eng. J., 166, 1032-1038 (2011). https://doi.org/10.1016/j.cej.2010.11.096
  17. M. Seredych, O. Mabayoje, and T. J. Bandosz, "Visible-Light-Enhanced Interactions of Hydrogen Sulfide with Composites of Zinc (Oxy)hydroxide with Graphite Oxide and Graphene," Langmuir, 28, 1337-1346 (2012). https://doi.org/10.1021/la204277c
  18. M. Seredych, O. Mabayoje, M. M. Kolesnik, V. Krstic, and T. J. Bandosz, "Zinc (hydr)oxide/graphite Based-phase Composites: Effect of the Carbonaceous Phase on Surface Properties and Enhancement in Electrical Conductivity," J. Mater. Chem., 22, 7970-7978 (2012). https://doi.org/10.1039/c2jm15350e
  19. S.-T. Yang, Y. Chang, H. Wang, G. Liu, S. Chen, Y. Wang, Y. Liu, and A. Cao, "Folding/Aggregation of Graphene Oxide and Its Application in $Cu^{2+}$ Removal," J. Colloid Interface Sci., 351, 122-127 (2010). https://doi.org/10.1016/j.jcis.2010.07.042
  20. V. Chandra, J. Park, Y. Chun, J. W. Lee, I. Hwang, and K. S. Kim, "Water-Dispersible Magnetite-reduced Graphene Oxide Composites for Arsenic Removal," ACS Nano, 4, 3979-3986 (2010). https://doi.org/10.1021/nn1008897
  21. C. Petit, M. Seredych, and T. J. Bandosz, "Revisiting the Chemistry of Graphite Oxides and its Effect on Ammonia Adsorption," J. Mater. Chem., 19, 9176 (2009). https://doi.org/10.1039/b916672f
  22. O. Mabayoje, M. Seredych, and T. J. Bandosz, "Enhanced Reactive Adsorption of Hydrogen Sulfide on the Composites of Graphene/Graphite Oxide with Copper (Hydr)oxychlorides," ACS Appl. Mater. Interfaces, 4, 3316-3324 (2012). https://doi.org/10.1021/am300702a
  23. H. S. Song, C. H. Ko, W. Ahn, B. J. Kim, E. Croiset, Z. Chen, and S. C. Nam, "Selective Dibenzothiophene Adsorption on Graphene Prepared Using Different Methods," Ind. Eng. Chem. Res., 51(30), 10259-10264 (2012). https://doi.org/10.1021/ie301209c
  24. S. Wu, Z. Yin, Q. He, G. Lu, Q. Yan, and H. Zhang, "Nucleation Mechanism of Electrochemical Deposition of Cu on Reduced Graphene Oxide Electrodes," J. Phys. Chem. C, 115, 15973-15979 (2011). https://doi.org/10.1021/jp201667p
  25. J. Algdal, T. Balasubramanian, M. Breitholtz, T. Kihlgren, and L. Wallden, "Thin Graphite Overlayers: Graphene and Alkali Metal Intercalation," Surf. Sci., 601, 1167-1175 (2007). https://doi.org/10.1016/j.susc.2006.12.039
  26. H. S. Song, M. G. Park, E. Croiset, Z. Chen, S. C. Nam, H.-J. Ryu, and K. B. Yi, "Effect of Active Zinc Oxide Dispersion on Reduced Graphite Oxide for Hydrogen Sulfide Adsorption at Mid-temperature," Appl. Surf. Sci., 280, 360-365 (2013). https://doi.org/10.1016/j.apsusc.2013.04.161
  27. T. Lu, L. Pan, H. Li, G. Zhu, T. Lv, X. Liu, Z. Sun, T. Chen, and D. H. C. Chua, "Microwave-assisted Synthesis of Graphene-ZnO Nanocomposite for Electrochemical Supercapacitors," J. Alloys. Compd., 509, 5488-5492 (2011). https://doi.org/10.1016/j.jallcom.2011.02.136

Cited by

  1. Metal-doped apatitic calcium phosphates: preparation, characterization, and reactivity in the removal of hydrogen sulfide from gas phase vol.22, pp.6, 2015, https://doi.org/10.1080/09276440.2015.1049096
  2. Performance of ZnMn2O4/SiO2 sorbent for high temperature H2S removal from hot coal gas vol.7, pp.57, 2017, https://doi.org/10.1039/C7RA06785B