DOI QR코드

DOI QR Code

Selective Catalytic Reduction of NOx with Ammonia over Cu and Fe Promoted Zeolite Catalysts

구리 제올라이트와 철 제올라이트 촉매에 의한 질소산화물의 암모니아 선택적 촉매환원반응 특성

  • Ha, Ho-Jung (Department of Chemical Engineering, Changwon National University) ;
  • Hong, Ju-Hwan (Department of Chemical Engineering, Changwon National University) ;
  • Choi, Joon-Hwan (Korea Institute of Material Science) ;
  • Han, Jong-Dae (Department of Chemical Engineering, Changwon National University)
  • 하호정 (창원대학교 화공시스템공학과) ;
  • 홍주환 (창원대학교 화공시스템공학과) ;
  • 최준환 (한국기계연구원 부설 재료연구소, 분말/세라믹 연구본부) ;
  • 한종대 (창원대학교 화공시스템공학과)
  • Received : 2013.06.27
  • Accepted : 2013.07.16
  • Published : 2013.09.30

Abstract

The $NH_3$-selective catalytic reduction (SCR) reaction of NO with excess of oxygen were systematically investigated over Cu-zeolite and Fe-zeolite catalysts. Cu-zeolite and Fe-zeolite catatysts to adapt the SCR technology for mobile diesel engines were prepared by liquid ion exchange and incipient wetness impregnation of $NH_4$-BEA and $NH_4$-ZSM-5 zeolites. The catalysts were characterized by BET, XRD, FE-TEM (field emission transmission electron microscopy) and SEM/EDS. The SCR examinations performed under stationary conditions showed that the Cu-exchanged BEA catalyst revealed pronounced performance at low temperatures of $200{\sim}250^{\circ}C$. With respect to the Fe-zeolite catalyst, the Cu-zeolite catalyst showed a higher activity in the SCR reaction at low temperatures below $250^{\circ}C$. BEA zeolite based catalyst exhibited good activity in comparison with ZSM-5 zeolite based catalyst at low temperatures below $250^{\circ}C$.

구리-제올라이트 촉매와 Fe-제올라이트 촉매로 과잉산소 분위기에서 일산화질소의 암모니아 선택적 촉매환원반응을 체계적으로 조사하였다. 촉매는 디젤엔진에서의 SCR기술의 적용을 위하여 구리와 철을 $NH_4$-BEA와 $NH_4$-ZSM-5 제올라이트에 이온교환법과 함침법으로 담지시켜 제조하였다. 촉매의 특성은 BET, XRD, FE-TEM과 SEM/EDS를 사용하여 조사하였다. 고정된 반응조건에서 선택적 촉매환원반응의 활성을 조사한 결과에서 구리를 BEA 제올라이트에 이온교환시켜 제조한 촉매가 $200{\sim}250^{\circ}C$의 저온영역에서 탁월한 성능을 나타내었다. $250^{\circ}C$ 이하의 저온에서 구리-제올라이트 촉매가 Fe-제올라이트 촉매보다 높은 반응활성을 나타내었다. BEA 제올라이트에 담지된 촉매가 ZSM-5 제올라이트에 담지된 촉매보다 $250^{\circ}C$ 이하의 저온에서 우수한 반응활성을 나타내었다.

Keywords

References

  1. Ma, L., Chang, H., Yang, S., Chen, L., Fu, L., and Li, J., "Relations Between Iron Sites and Performance of Fe/HBEA Catalysts Prepared by Two Different Methods for $NH_3$-SCR," Chem. Eng. J., 209, 652-660 (2012). https://doi.org/10.1016/j.cej.2012.08.042
  2. Rahkamaa-Tolonen, T. K., Maunula, T., Lomma, M., Huuhtanen, M., and Keiski, R. L., "The Effect of $NO_2$ on the Activity of Fresh and Aged Zeolite Catalysts in the $NH_3$-SCR Reaction," Catal. Today, 100, 217-222 (2005). https://doi.org/10.1016/j.cattod.2004.09.056
  3. Busca, G., Lietti L., Ramis, G., and Berti, F., "Chemical and Mechanistic Aspects of the Selective Catalytic Reduction of NOx by Ammonia over Oxide Catalysts: A Review," Appl. Catal. B: Environ., 18, 1-36 (1998). https://doi.org/10.1016/S0926-3373(98)00040-X
  4. Kim, S. S., Jang, D. H., and Hong, S. C., "A Study of the Reaction Characteristics on Hydrocarbon Selective Catalytic Reduction of NOx over Various Noble Metal Catalysts," Clean Tech., 17, 225-230 (2011).
  5. Skalska, K., Miller J. S., and Ledakowicz, S., "Trends in NOx Abatement: A Review," Sci. Total Environ., 408, 3976-3987 (2010). https://doi.org/10.1016/j.scitotenv.2010.06.001
  6. Li, J., Chang, H., Ma, L., Hao, J., and Yang, R. T., "Low-temperature Selective Catalytic Reduction of NOx with $NH_3$ over Metal Oxide and Zeolite Catalysts-A Review," Catal. Today, 175, 147-156 (2011). https://doi.org/10.1016/j.cattod.2011.03.034
  7. Roy, S., Hegde, M. S., and Madras, G., "Catalysis for NOx Abatement," Appl. Energy, 86, 2284-2297 (2009).
  8. Balle, P., Geiger, B., Klukowski, D., Pignatelli, M., Wohnrau, S., Menzel, M., Zirkwa, I., Brunkalus, G., and Kureti, S., "Study of the Selective Catalytic Reduction of NOx on an Efficient Fe/HBEA Zeolite Catalyst for Heavy Duty Diesel Engines," Appl. Catal. B: Environ., 91, 587-595 (2009). https://doi.org/10.1016/j.apcatb.2009.06.031
  9. Schwidder, M., Heikens, S., Toni, A. D., Geisler, S., Berndt, M., Bruckner, A., and Grunert, W., "The Role of $NO_2$ in the Selective Catalytic Reduction of Nitrogen Oxides over Fe-ZSM-5 Catalysts: Active Sites for the Conversion of NO and NO/$NO_2$ Mixtures," J. Catal., 259, 96-103 (2008). https://doi.org/10.1016/j.jcat.2008.07.014
  10. Colombo, M., Nova, I., and Tronconi E., "A Comparative Study of the $NH_3$-SCR Reaction over a Cu-zeolite and a Fe-zeolite Catalyst," Catal. Today, 151, 223-230 (2010). https://doi.org/10.1016/j.cattod.2010.01.010
  11. Metkar, P. S., Salazer, N., Muncrief, R., Balakotaiah, V., and Harold, M. P., "Selective Catalytic Reduction of NO with $NH_3$ on Iron Zeolite Monolithic Catalysts: Steady-state and Transient Kinetics," Appl. Catal. B: Environ., 104, 110-126 (2011). https://doi.org/10.1016/j.apcatb.2011.02.022
  12. Colombo, M., Nova, I., and Tronconi, E., "Detailed Kinetic Modeling of the $NH_3-NO/NO_2$ SCR Reaction over a Commercial Cu-zeolite for Diesel Exhausts after Treatment," Catal. Today, 197, 243-255 (2012). https://doi.org/10.1016/j.cattod.2012.09.002
  13. Sultana, A., Nanba, T., Haneda, M., Sasaki, M., and Hamada, H., "Influence of Co-cations on the Formation of $Cu^+$ Species in Cu/ZSM-5 and Its Effect on Selective Catalytic Reduction of NOx with $NH_3$," Appl. Catal. B: Environ., 101, 61-67 (2010). https://doi.org/10.1016/j.apcatb.2010.09.007
  14. Park, J. H., Park, H. J., Baik, J. H., Nam, I. S., Shin, C. H., Lee, J. H., Cho, B. K., and Oh, S. H., "Hydrothermal Stability of CuZSM5 Catalyst in Reducing NO by $NH_3$ for the Urea Selective Catalytic Reduction Process," J. Catal., 240, 47-57 (2006). https://doi.org/10.1016/j.jcat.2006.03.001
  15. Yahiro, H., and Iwamoto, M., "Copper Ion-exchanged Zeolite Catalysts in DeNOx Reaction," Appl. Catal. A: Gen., 222, 163-181 (2001). https://doi.org/10.1016/S0926-860X(01)00823-7
  16. Cheung, T., Bhargava, S. K., Hobday, M., and Foger, K., "Adsorption of NO on Cu Exchange Zeolites, an FTIR Study: Effects of Cu Levels, NO Pressure, and Catalyst Pretreatment," J. Catal., 158, 301-310 (1996). https://doi.org/10.1006/jcat.1996.0029
  17. Olsson, L., Sjovall, H., and Blint, R. J., "A Kinetic Model for Ammonia Selective Catalytic Reduction over Cu-ZSM-5," Appl. Catal. B: Environ., 81, 203-217 (2008). https://doi.org/10.1016/j.apcatb.2007.12.011
  18. Qi, G. S., and Yang, R. T., "Ultra-active Fe/ZSM-5 Catalyst for Selective Catalytic Reduction of Nitric Oxide with Ammonia," Appl. Catal. B: Environ., 60, 13-22 (2005). https://doi.org/10.1016/j.apcatb.2005.01.012
  19. Hoj, M., Beier, M. J., Grunwaldt, J. D., and Dahl, S., "The Role of Monomeric Iron During the Selective Catalytic Reduction of NOx by $NH_3$ over Fe-BEA Zeolite Catalysts," Appl. Catal. B: Environ., 93, 166-176 (2009). https://doi.org/10.1016/j.apcatb.2009.09.026
  20. Klukowski, D., Balle, P., Geiger, B., Wagloehner, S., Kureti, S., Kimmerle, B., Baiker, A., and Grunwaldt, J.-D., "On the Mechanism of the SCR Reaction on Fe/HBEA Zeolite," Appl. Catal. B: Environ., 93, 185-193 (2009). https://doi.org/10.1016/j.apcatb.2009.09.028
  21. Iwasaki, M., Yamazaki, K., Banno, K., and Shinjoh, H., "Characterization of Fe/ZSM-5 DeNOx Catalysts Prepared by Different Methods: Relationships between Active Fe Sites and $NH_3$-SCR Performance," J. Catal., 260, 205-216 (2008). https://doi.org/10.1016/j.jcat.2008.10.009
  22. Brandenberger, S., Krocher, O., Tissler, A., and Althoff, R., "Estimation of the Fractions of Different Nuclear Iron Species in Uniformly Metal-exchanged Fe-ZSM-5 Samples Based on a Poisson Distribution," Appl. Cat. A: Gen., 373, 168-175 (2010). https://doi.org/10.1016/j.apcata.2009.11.012
  23. Brandenberger, S., Krocher, O., Tissler, A., and Althoff, R., "The Determination of the Activities of Different Iron Species in Fe-ZSM-5 for SCR of NO by $NH_3$," Appl. Cat. B: Environ., 95, 348-357 (2010). https://doi.org/10.1016/j.apcatb.2010.01.013
  24. Shwan, S., Jansson, J., Korsgren, J., Olsson, L., and Skoglundh, M. "Kinetic Modeling of H-BEA and Fe-BEA as $NH_3$-SCR Catalysts-effect of Hydrothermal Treatment," Catal. Today, 197, 24-37 (2012). https://doi.org/10.1016/j.cattod.2012.06.014

Cited by

  1. Effect of copper precursor on simultaneous removal of PM and NO x of a 2-way SCR/CDPF vol.141, 2016, https://doi.org/10.1016/j.ces.2015.11.007
  2. The Effect of Promoter on the SO2-resistance of Fe/zeolite Catalysts for Selective Catalytic Reduction of NO with Ammonia vol.21, pp.3, 2015, https://doi.org/10.7464/ksct.2015.21.3.153
  3. Catalytic Technology for NOx Abatement using Ammonia vol.22, pp.4, 2016, https://doi.org/10.7464/ksct.2016.22.4.211