DOI QR코드

DOI QR Code

Graphene Attached on Microsphere Surface for Thermally Conductive Composite Material

그래핀이 표면에 분포된 미립자를 이용한 열전도 복합재료의 개발

  • Choi, Jae-Yong (Division of Advanced Materials Engineering, Kongju National University) ;
  • Lee, Joo Hyuk (Division of Advanced Materials Engineering, Kongju National University) ;
  • Kim, Mi Ri (Division of Advanced Materials Engineering, Kongju National University) ;
  • Lee, Ki Seok (Division of Mechanical & Automotive Engineering, Kongju National University) ;
  • Cho, Kuk Young (Division of Advanced Materials Engineering, Kongju National University)
  • 최재용 (공주대학교 신소재공학부) ;
  • 이주혁 (공주대학교 신소재공학부) ;
  • 김미리 (공주대학교 신소재공학부) ;
  • 이기석 (공주대학교 기계자동차공학부) ;
  • 조국영 (공주대학교 신소재공학부)
  • Received : 2013.05.21
  • Accepted : 2013.06.01
  • Published : 2013.09.30

Abstract

Thermally conductive materials are widely used in various applications where effective heat dissipation is required. Graphene shows high potential for various uses owing to high electrical conductivity, good mechanical strength, and high thermal conductivity. Generally previous works used organic solvents are generally used for the dispersion of graphene in fabrication procedure. In order to achieve clean fabrication it is required to use water media. In this study, we fabricated graphene attached poly(methyl methacrylate) (PMMA) microsphere via microfluidic method. With the aid of surfactant, graphene was well dispersed in water which was used as continuous flow. Thermal conductivity was improved with the small amount of graphene addition and this indicate potential use of this system for thermally conductive composite material.

열전도성 복합재료는 방열특성이 요구되는 다양한 분야에 응용되고 있다. 그래핀은 우수한 전기전도성, 기계적 특성, 열전도 특성을 가지는 잠재성이 높은 물질이다. 그러나 기존의 그래핀 입자를 사용한 경우에서는 유기용매를 이용하여 분산을 하게 되어 청정생산공정측면에서 이를 개선하는 연구가 필요하다. 본 연구에서는 마이크로플루이딕(microfluidic)으로 균일한 미립자를 제조하는데 있어 계면안정제를 도입하여 수분산을 통한 그래핀 용액을 연속상(water phase)으로 사용하여 표면에 그래핀이 분포된 폴리메틸메타크릴레이트(Poly(methyl methacrylate), PMMA)미립자를 제조하였다. 본 연구의 제조방법은 소량의 그래핀으로 열전도 특성이 향상되어 열전도성 복합재료로 사용이 가능하다.

Keywords

References

  1. Lee, H. L., Ha, S. M., Yoo, Y., and Lee, S.-G., "Current Trends in Thermally Conductive Polymer Composites," Polym. Sci. Technol., 24(1), 30-37 (2013).
  2. Park, O.-K., Lee, S., Ku, B.-C., and Lee, J. H., "A Review of Graphene-based Polymer Nanocomposites," Polym. Sci. Technol., 22(5), 467-473 (2011).
  3. Prasher, R., "Thermal Interface Materials: Historical Perspective, Status, and Future Directions," Proc. IEEE, 94(8), 1571-1586 (2006). https://doi.org/10.1109/JPROC.2006.879796
  4. Yim, S.-W., Lee, J.-H., Lee, Y.-G., Lee, S.-G., and Kim, S.-R., "Effect of the Pressure on the Interface and Thermal Conductivity of Polypropylene-SiC Composites," J. Adhes. Interface, 10(1), 30-34 (2009).
  5. Hong, J., and Shim, S. E., "Trends in Development of Thermally Conductive Polymer Composites," Appl. Chem. Eng., 21(2), 115-128 (2010).
  6. Luyt, A. S., Molefi, J. A., and Krump, H., "Thermal, Mechanical and Electrical Properties of Copper Powder Filled Low-density and Linear Low-density Polyethylene Composites," Polym. Degrad. Stabil., 91(7), 1629-1636 (2006). https://doi.org/10.1016/j.polymdegradstab.2005.09.014
  7. Sanada, K., Tada, Y., and Shindo, Y., "Thermal Conductivity of Polymer Composites with Close-packed Structure of Nano and Micro Fillers," Compos. Part A-Appl. S. Manuf., 40(6-7), 724-730 (2009). https://doi.org/10.1016/j.compositesa.2009.02.024
  8. Lee, E.-S., Lee, S.-M., Shanefield, D. J., and Cannon, W. R., "Enhanced Thermal Conductivity of Polymer Matrix Composite via High Solids Loading of Aluminium Nitride in Epoxy Resin," J. Am. Ceram. Soc., 91(4), 1169-1174 (2008). https://doi.org/10.1111/j.1551-2916.2008.02247.x
  9. Zhi, C., Bando, Y., Terao, T., Tang, C., Kuwahara, H., and Golberg, D., "Towards Thermoconductive, Electrically Insulating Polymeric Composites with Boron Nitride Nanotubes as Fillers," Adv. Funct. Mater., 19(12), 1857-1862 (2009). https://doi.org/10.1002/adfm.200801435
  10. Xu, J., Razeeb, K. M., and Roy, S., "Thermal Properties of Single Walled Carbon Nanotube-silicone Nanocomposites," J. Polym. Sci. B: Polym. Phys., 46(17), 1845-1852 (2008). https://doi.org/10.1002/polb.21519
  11. Im, H., and Kim, J., "Thermal Conductivity of a Graphene Oxide-carbon Nanotube Hybrid/Epoxy Composite," Carbon, 50(15), 5429-5440 (2012). https://doi.org/10.1016/j.carbon.2012.07.029
  12. Potts, J. R., Dreyer, D. R., Bielawski, C. W., and Ruoff, R. S., "Graphene-based Polymer Nanocomposites," Polymer, 52(1), 5-25 (2011). https://doi.org/10.1016/j.polymer.2010.11.042
  13. Teng, C.-C., Ma, C.-C. M., Lu, C.-H., Yang, S.-Y., Lee, S.-H., Hsiao, M.-C., Yen, M.-Y., Chiou, K.-C., and Lee, T.-M., "Thermal Conductivity and Structure of Non-covalent Functionalized Graphene/Epoxy Composites," Carbon, 49(15), 5107-5116 (2011). https://doi.org/10.1016/j.carbon.2011.06.095
  14. Balandin, A. A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., and Lau, C. N., "Superior Thermal Conductivity of Single-layer Graphene," Nano Lett., 8(3), 902-907 (2008). https://doi.org/10.1021/nl0731872
  15. Kuilla, T., Bhadra, S., Yao, D., Kim, N. H., Bose, S., and Lee, J. H., "Recent Advances in Graphene Based Polymer Composites," Prog. Polym. Sci., 35(11), 1350-1375 (2010). https://doi.org/10.1016/j.progpolymsci.2010.07.005
  16. Bai, H., Li, C., and Shi, G., "Functional Composite Materials Based on Chemically Converted Graphene," Adv. Mater., 23(9), 1089-1115 (2011). https://doi.org/10.1002/adma.201003753
  17. Zaman, I., Phan, T. T., Kuan, H.-C., Meng, Q., La, L. T. B., Luong, L., Youssf, O., and Ma, J., "Epoxy/Graphene Platelets Nanocomposites with Two Levels of Interface Strength," Polymer, 52(7), 1603-1611 (2011). https://doi.org/10.1016/j.polymer.2011.02.003
  18. Vadukumpully, S., Paul, J., Mahanta, N., and Valiyaveettil, S., "Flexible Conductive Graphene/Poly(vinyl chloride) Composite Thin Films with High Mechanical Strength and Thermal Stability," Carbon, 49(1), 198-205 (2011). https://doi.org/10.1016/j.carbon.2010.09.004
  19. Hwangbo, K.-H., Kim, M. R., Lee, C.-S., and Cho, K. Y., "Facile Fabrication of Uniform Golf-ball-shaped Microparticles from Various Polymers," Soft Matter, 7(22), 10874-10878 (2011). https://doi.org/10.1039/c1sm06529g
  20. Lewis, C. L., Choi, C.-H., Lin, Y., Lee, C.-S., and Yi, H., "Fabrication of Uniform DNA-conjugated Hydrogel Microparticles via Replica Molding for Facile Nucleic Acid Hybridization Assays," Anal. Chem. 82(13), 5851-5858 (2010). https://doi.org/10.1021/ac101032r
  21. Choi, C.-H., Jeong, J.-M., Kang, S.-M., Lee, C.-S., and Lee, J., "Synthesis of Monodispersed Microspheres from Laplace Pressure Induced Droplets in Micromolds," Adv. Mater., 24(37), 5078-5082 (2012). https://doi.org/10.1002/adma.201200843
  22. Jin, H.-J., Choi, H. J., Yoon, S. H., Myung, S. J., and Shim, S. E., "Carbon Nanotube-adsorbed Polystyrene and Poly(methyl methacrylate) Microspheres," Chem. Mater., 17(16), 4034-4037 (2005). https://doi.org/10.1021/cm050500x
  23. Kang, S.-M., Choi, C.-H., Kim, J., and Lee, C.-S., "Synthesis Technology of Functional Colloid Particles and Its Applications," Clean Tech., 18(4), 331-340 (2012). https://doi.org/10.7464/ksct.2012.18.4.331
  24. Ryou, M.-H., Lee, Y. M., Cho, K. Y., Han, G.-B., Lee, J.-N., Lee, D. J., Choi, J. W., and Park, J.-K., "A Gel Polymer Electrolyte Based on Initiator-free Photopolymerization for Lithium Secondary Batteries," Electrochim. Acta, 60, 23-30 (2012). https://doi.org/10.1016/j.electacta.2011.10.072

Cited by

  1. Calcium Carbonate/Gelatin Methacrylate Microspheres for 3D Cell Culture in Bone Tissue Engineering vol.26, pp.8, 2013, https://doi.org/10.1089/ten.tec.2020.0064