DOI QR코드

DOI QR Code

The Impact of Cooking on the Antioxidative and Antigenotoxic Effects of Rice

호화과정이 백미, 현미, 발아현미의 항산화 및 항유전 독성 활성에 미치는 영향

  • Kim, So-Yun (Dept. of Food and Nutrition, Kyungnam University) ;
  • Seo, Bo-Young (Dept. of Food and Nutrition, Kyungnam University) ;
  • Park, Eunju (Dept. of Food and Nutrition, Kyungnam University)
  • 김소윤 (경남대학교 식품영양학과) ;
  • 서보영 (경남대학교 식품영양학과) ;
  • 박은주 (경남대학교 식품영양학과)
  • Received : 2013.04.01
  • Accepted : 2013.07.30
  • Published : 2013.09.30

Abstract

Rice is widely grown in Asia and is one of the major dietary staples in the world. Also, rice contains antioxidants which can prevent from oxidative stress related diseases, including cancer, atherosclerosis, and diabetes. Because the rice is consumed cooked, the effect of the cooking process on the antioxidative and antigenotoxic properties of rice is lacking. The aim of this study was to determine the effects of cooking on the antioxidant and antigenotoxic effects of white rice (WR), brown rice (BR), and germinated brown rice (GBR). The antioxidant activities were measured for total phenolic content (TPC), DPPH radical scavenging activity (DPPH RSA), total antioxidant capacity (TRAP), and oxygen radical absorbance capacity (ORAC). The highest TPC was found in uncooked BR (18.4 mg gallic acid equivalent/100 g). After cooking, the TPC of WR significantly increased, while the TPC of BR and GBR were reduced by 47.7% and 36.7%, respectively. The $IC_{50}$ for DPPH RSA was not significantly different in uncooked rice, while the DPPH RSA of WR and GBR decreased after cooking and the DPPH RSA of BR significantly increased. TRAP values in BR and GBR increased after cooking, while the value of WR decreased. The ORAC values of uncooked WR, BR, and GBR were 5.3, 4.3, and $3.9{\mu}M$ trolox equivalent at the concentration of $50{\mu}g/mL$. After cooking, the ORAC value of BR remained unchanged, while the value of GBR increased and the value of WR decreased. The antigenotoxic activities of WR, BR, and GBR were determined by measuring the inhibitory effects of $H_2O_2$-induced DNA damage on human leukocytes using the comet assay. The results showed that all rice tested showed a significant antigenotoxic effect against oxidative stress, except for the cooked white rice. Overall, our results indicate the addition of brown rice and/or germinated brown rice to cooked white rice is a good option for improving the benefits of rice.

쌀은 우리의 중요한 주식으로 대부분 취반과정을 통하여 호화시킨 형태로 섭취하는 것이 일반적이다. 따라서 본 연구에서는 백미, 현미, 발아현미 세 종류 쌀을 이용하여 총 폴리페놀 함량(TPC)과 항산화 활성(DPPH 라디칼 소거능, TRAP, ORAC assay) 및 항유전 독성을 분석하고 호화과정에 따른 생리활성의 변화를 살펴보고자 하였다. 총 페놀함량에서 현미와 발아현미는 호화 후 함량이 유의적으로 감소하였으나 백미는 유의적으로 증가하는 경향을 나타내었다. DPPH 라디칼 소거능의 $IC_{50}$값을 비교한 결과, 백미는 호화과정을 거친 후에는 최고 농도를 제외한 농도에서 활성이 나타나지 않아 $IC_{50}$값을 산출할 수 없었으며 발아현미의 경우 호화전 3.3 mg/mL에서 호화 후 4.2 mg/mL로 증가한 반면, 현미는 호화 전 3.5 mg/mL에서 호화 후 3.1 mg/mL로 증가하였다. 총 항산화능을 측정한 TRAP 분석에서는 호화 전 백미와 발아현미의 경우 $16.7{\mu}g/mL$에서부터 농도 의존적으로 수치가 증가하였으나, 현미의 경우 백미와 발아현미에 비해 낮은 TRAP 수치를 나타내었다. 호화 후 백미는 TRAP 수준이 낮아진 반면 현미와 발아현미의 TRAP 수준은 높아지는 것을 확인할 수 있었다. ORAC assay 결과 또한 세 가지 종류의 쌀을 비교하였을 때, 호화 전의 경우 백미가 $5.1{\pm}0.2{\mu}M$ TE로 가장 높았으나 호화 후 백미의 활성은 감소한 반면 현미와 발아현미는 증가하여 TRAP과 유사한 경향을 나타내었다. 산화적 스트레스에 의한 DNA 손상 억제 효과는 백미의 경우 호화 전과 후 모두 양성대조군과 유의적인 차이를 나타내지 않았다. 반면 현미와 발아현미의 경우 호화 전후에 상관없이 양성대조군에 비해 DNA 손상을 보호하는 효과를 나타내었으며 각 시료의 농도 간 유의적 차이는 없는 것으로 나타났다. 이상의 결과를 종합해보면, 호화과정을 거친 후 쌀을 섭취 시 백미보다 현미 또는 발아현미를 섭취하는 것이 건강에 더 유익할 것이라고 판단된다.

Keywords

References

  1. Sohn HY, Kwon CS, Son KH, Kwon GS, Kwon YS, Ryu HY, Kum EJ. 2005. Antithrombosis and antioxidant activity of methanol extract from different brands of rice. J Korean Soc Food Sci Nutr 34: 593-598. https://doi.org/10.3746/jkfn.2005.34.5.593
  2. Choi YH, Kim SL, Jeong EG, Song J, Kim JT, Kim JH, Lee CG. 2008. Effects of low-temperature storage of brown rice on rice and cooked rice quality. Korean J Crop Sci 53: 179-186.
  3. Jang SS. 1998. Method of germinating with brown rice. Korean Patent 1998-0247686.
  4. Kim SK, Cheigh HS. 1979. Radial distribution of calcium, phosphorus, iron, thiamine, and riboflavin in the degermed brown rice kernel. Korean J Food Sci Technol 11: 122-125.
  5. Oh SH. 2007. Effects and applications of germinated brown rice with enhanced levels of GABA. Food Science and Industry 40(3): 41-46.
  6. Lee JY, Lee WJ. 2011. Quality characteristics of germinated brown rice flour added noodles. J Korean Soc Food Sci Nutr 40: 981-985. https://doi.org/10.3746/jkfn.2011.40.7.981
  7. Oh SS. 2002. Study on nutritional properties of sprouting brown rice. MS Thesis. Kongju National University, Gongju, Korea.
  8. Cho D, Chung HJ, Cho HY, Lim ST. 2011. Health functions and utilization products of germinated brown rice. Food Science and Industry 44(1): 76-86.
  9. Butsat S, Siriamornpun S. 2010. Antioxidant capacities and phenolic compounds of the husk, bran, and endosperm of Thai rice. Food Chem 119: 606-613. https://doi.org/10.1016/j.foodchem.2009.07.001
  10. Kim DJ, Oh SK, Yoon MR, Chun AR, Choi IS, Lee DH, Lee JS, Yu KW, Kim YK. 2011. The change in biological activities of brown rice and germinated brown rice. J Korean Soc Food Sci Nutr 40: 781-789. https://doi.org/10.3746/jkfn.2011.40.6.781
  11. Kang BR, Park M, Lee HS. 2006. Germination dependency of antioxidative activities in brown rice. J Korean Soc Food Sci Nutr 35: 389-394. https://doi.org/10.3746/jkfn.2006.35.4.389
  12. Kim NH, Lee MG, Lee SR. 1996. Elimination of phenthoate residues in the washing and cooking of polished rice. Korean J Food Sci Technol 28: 490-496.
  13. Folin O, Denis W. 1912. On phosphotungastic-phosphomolybdic compounds as color reagents. J Biol Chem 12: 239-249.
  14. Mensor LL, Menezes FS, Leitão GG, Reis AS, dos Santos TC, Coube CS, Leitão SG. 2001. Screening of Brazilian plant extracts for antioxidant activity by the use of DPPH free radical method. Phytother Res 15: 127-130. https://doi.org/10.1002/ptr.687
  15. Rice-Evans C, Miller NJ. 1994. Total antioxidant status in plasma and body fluids. Methods Enzymol 234: 279-293. https://doi.org/10.1016/0076-6879(94)34095-1
  16. Kurihara H, Fukami H, Asami S, Toyoda Y, Nakai M, Shibata H, Yao XS. 2004. Effects of oolong tea on plasma antioxidative capacity in mice loaded with restraint stress assessed using the oxygen radical absorbance capacity (ORAC) assay. Biol Pharm Bull 27: 1093-1098. https://doi.org/10.1248/bpb.27.1093
  17. Ou B, Hampsch-Woodill M, Prior RL. 2001. Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. J Agric Food Chem 49: 4619-4626. https://doi.org/10.1021/jf010586o
  18. Singh PN, McCoy MT, Tice RR, Schneider EL. 1988. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175: 184-191. https://doi.org/10.1016/0014-4827(88)90265-0
  19. Kong S, Choi Y, Kim Y, Kim DJ, Lee J. 2009. Antioxidant activity and antioxidant components in methanolic extract from Geumjong rice. J Korean Soc Food Sci Nutr 38: 807-811. https://doi.org/10.3746/jkfn.2009.38.6.807
  20. Kim MH, Tungjaroenchai W, Ryu GH. 2007. Effect of germination time and extrusion temperature on properties of germinated brown rice. J Korean Soc Food Sci Nutr 36:636-642. https://doi.org/10.3746/jkfn.2007.36.5.636
  21. Kim H, Park CK, Jeong JH, Jeong HS, Lee HY, Yu KW. 2009. Immune stimulation and anti-metastasis of crude polysaccharide from submerged culture of Hericicum erinaceum in the medium supplemented with Korean ginseng extracts. J Korean Soc Food Sci Nutr 38: 1535-1542. https://doi.org/10.3746/jkfn.2009.38.11.1535
  22. Scalbert A, Johnson IT, Saltmarsh M. 2005. Polyphenols: antioxidants and beyond. Am J Clin Nutr 81: 215S-217S.
  23. Tian S, Nakamura K, Cui T, Kayahara H. 2005. High-performance liquid chromatographic determination of phenolic compounds in rice. J Chromatogr A 1063: 121-128. https://doi.org/10.1016/j.chroma.2004.11.075
  24. Kim KB, Yoo KH, Park HY, Jeong JM. 2006. Anti-oxidative activities of commercial edible plant extracts distributed in Korea. J Korean Soc Appl Biol Chem 49: 328-333.
  25. Woo KS, Jeong EG, Suh SJ, Yang CI, Jeong HS, Kim KJ. 2008. Antioxidant components and antioxidant antivities of 70% ethanol extracts on Suweon-511 and Ilpum rice. J Korean Soc Food Sci Nutr 37: 1223-1230. https://doi.org/10.3746/jkfn.2008.37.10.1223
  26. Kim DJ, Oh SK, Yoon MR, Chun AR, Hong HC, Lee JS, Kim YK. 2010. Antioxidant compounds and antioxidant activities of the 70% ethanol extracts from brown and milled rice by cultivar. J Korean Soc Food Sci Nutr 39: 467-473. https://doi.org/10.3746/jkfn.2010.39.3.467
  27. Ronald LP, Xianli W, Karen S. 2005. Standardized method for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J Agric Food Chem 53:4290-4302. https://doi.org/10.1021/jf0502698
  28. Chun HS, Yoo JE, Kim IH, Cho JS. 1999. Comparative antimutagenic and antioxidative activities of rice with different milling fractions. Korean J Food Sci Technol 31:1371-1377.
  29. Lee YR, Woo KS, Hwang IG, Kim HY, Lee SH, Lee J,Jeong HS. 2012. Physicochemical properties and antioxidant activities of garlic (Allium sativum L.) with different heat and pressure treatments. J Korean Soc Food Sci Nutr 41:278-282. https://doi.org/10.3746/jkfn.2012.41.2.278
  30. Yuji Y, Keitaro S, Hiroshi O, Tomoya O, Katsuhiko H, Kenichi O. 2004. Preparation of co-extruded flours using germinated brown rice and barley and its antihypertensive effect. Nippon Shokuhin Kogaku Kaishi 51: 592-603. https://doi.org/10.3136/nskkk.51.592
  31. Chun HS, Kim IH, Kim YJ, Kim KH. 1994. inhibitory effect of rice extract on the chemically induced mutagenesis. Korean J Food Sci Technol 26: 188-194.
  32. Surh Y. 1999. Molecular mechanisms of chemopreventive effects of selected dietary and medicinal phenolic substances. Mutat Res 428: 305-327. https://doi.org/10.1016/S1383-5742(99)00057-5
  33. Johnson IT, Williamson G, Musk SR. 1994. Anticarcinogenic factors in plant foods: a new class of nutrients? Nutr Res Rev 7: 175-204. https://doi.org/10.1079/NRR19940011
  34. Jeon KI, Park E, Park HR, Jeon YJ, Cha SH, Lee SC. 2006. Antioxidant activity of far-infrared radiated rice hull extracts on reactive oxygen species scavenging and oxidative DNA damage in human lymphocytes. J Med Food 9: 42-48. https://doi.org/10.1089/jmf.2006.9.42

Cited by

  1. Screening of Personalized Immunostimulatory Activities of Saengsik Materials and Products Using Human Primary Immune Cell vol.43, pp.9, 2014, https://doi.org/10.3746/jkfn.2014.43.9.1325
  2. Protective Effects of Phellinus linteus and Curry-Added Cooked Mixed Grain Rice Extracts on Oxidative Stress-Induced LLC-PK1 Cell Damage vol.43, pp.11, 2014, https://doi.org/10.3746/jkfn.2014.43.11.1674
  3. Optimization of thermal processing conditions for brown rice noodles vol.59, pp.4, 2016, https://doi.org/10.1007/s13765-016-0187-2
  4. 발아현미 첨가 밥의 취반 및 산화방지 특성에 미치는 취반방법의 영향 vol.49, pp.3, 2013, https://doi.org/10.9721/kjfst.2017.49.3.311