DOI QR코드

DOI QR Code

A Comparative Study on Green Liquor Pre-Pulping Extraction of Mixed Hardwood Chips

혼합 하드우드 칩으로부터 녹액(Green Liqour)선-펄핑추출 공정에 관한 연구

  • Um, Byung-Hwan (Department of Chemical Engineering and Research Center of Chemical Technology, Hankyong National University)
  • 엄병환 (한경대학교 화학공학과, 화학기술연구소)
  • Received : 2013.07.22
  • Accepted : 2013.08.27
  • Published : 2013.10.01

Abstract

Mixed hardwood chips were pre-pulping extracted with green liquor prior to kraft pulping in order to recover hemicelluloses for use as biofuels. This green liquor solution containing mainly sodium sulfide and sodium carbonate was applied at different alkali charges (expressed as $Na_2O$) of 0, 1, 3, and 5% on dry wood weight. The extractions were performed at $160^{\circ}C$ for residence times ranging from about 1-2 h to determine the effect of extraction severity on composition of the pre-pulping extract. The severity of hemicellulose extraction time and green liquor charge controls the concentration of acetic acid and monosaccharide sugars available for downstream processing, the accumulation of degradation products such as organic acids and furans in the extract. As the alkali charge was increased, the amount of acetate side chains on the hemicelluloses and the dissolved lignin in the extract increased but the carbohydrate and sugars in the extract decreased appreciably. Hot water extraction (0% alkali addition) released the greatest amount of carbohydrates, up to 29.80 g/L measured as component sugars, but resulted in the greatest decrease in pulp yield. Meanwhile, pre-pulping extraction with 3% green liquor increased the pulp yield while greatly reducing the component sugars to 7.08 g/L. Fundamental data obtained in this study will allow selection of optimum hemicellulose extraction conditions for integrating the extraction operation into the Kraft pulping process.

본 연구에서는 바이오연료 생산을 위한 헤미셀룰로오스의 회수 목적으로 혼합 하드우드 칩을 크라프트(kraft) 펄핑공정 전에 녹액(green liquor)으로 선-펄핑추출(pre-pulping extraction) 하였다. 본 실험에 사용된 녹액은 황화나트륨과 탄산나트륨이 주요 성분이며, 이 녹액에 목재 건조 질량당 0, 1, 3, 5%의 알칼리($Na_2O$)를 각각 충진하였다. 가혹 조건에 따른 선-펄핑추출액의 구성 성분을 알아보기 위해 추출은 반응시간은 1~2 h로 달리하면서 $160^{\circ}C$ 조건에서 실험을 수행하였다. 선-펄핑추출공정은 헤미셀룰로오스 추출시간과 녹액 주입 정도의 가혹도(severity)에 따라서 하향류 공정(downstream process)에서 활용 가능한 아세트산(acetic acid)과 단당류 농도, 그리고 유기산과 퓨란(furan)과 같은 분해 생성물의 축적 정도가 변한다. 본 연구 결과에서는 알칼리 주입 양이 증가할수록 헤미셀룰로오스에 존재하는 아세테이트(acetate)의 곁사슬과 용해성 및 리그닌의 양은 증가하지만, 추출액에서 탄수화물과 당류는 상당히 감소하였다. 특히 고온수(hot water)로 추출(알칼리 주입 0%)하는 경우 29.80 g/L 이상의 가장 많은 양의 탄수화물이 추출되었으나, 펄프 수율은 가장 많이 감소하였다. 또한 3% 녹액의 추출은 펄프 수율은 증가하였으나 당은 7.08 g/L로 많은 양이 감소하였다. 이 논문에서 얻어진 데이터를 통해 크라프트 펄핑공정에 추출공정 통합을 위한 헤미셀룰로오스 추출 조건을 최적화할 수 있을 것이다.

Keywords

References

  1. Biermann, C., Handbook of Pulping and Papermaking, 2nd ed., Academic Press, California, CA(1996).
  2. Sjostrom, E., Wood Chemistry: Fundamentals and Applications, 2nd ed., Academic Press, California, CA(1993).
  3. Gabrielii, I., Gatenholm, P., Glasser, W. G., Jain, R. K. and Kenne, L., "Separation, Characterization and Hydrogel-formation of Hemicellulose from Aspen Wood," Carbohydr. Polym., 43, 367- 374(2000). https://doi.org/10.1016/S0144-8617(00)00181-8
  4. Um, B. H. and van Walsum, G. P., "Acid Hydrolysis of Hemicellulose in Green Liquor Pre-pulping Extract of Mixed Northern Hardwoods," Appl. Biochem. Biotechnol, 153, 127-138(2009). https://doi.org/10.1007/s12010-009-8561-8
  5. Ebringerova, A., Hromadova, Z., Kaucurakova, M. and Antal, M., "Quaternizedxylans: Synthesis and Structural Characterization," Carbohydr. Polym., 24, 301-308(1994). https://doi.org/10.1016/0144-8617(94)90075-2
  6. Jain, R. K., Sjostedt, M. and Glasser, W. G., "Thermoplastic Xylan Derivatives with Propylene Oxide," Cellulose. Andover., 7(4), 319-336(2000). https://doi.org/10.1023/A:1009260415771
  7. Niu, W., Molefe, M. N. and Frost, J. W., "Microbial Synthesis of the Energetic Material Precursor 1,2,4-Butanetriol," J. Am. Chem. Soc., 125, 12998(2003). https://doi.org/10.1021/ja036391+
  8. Brasch, D. J. and Free, K. W., "Prehydrolysis-Kraft Pulping of Pinusradiata Grown in New Zealand," Tappi, 48(4), 245-248(1965).
  9. Amidon, T. and Liu, S., "Water-based Woody Biorefinery," Biotechnology Advances., 27(5), 542-550(2009). https://doi.org/10.1016/j.biotechadv.2009.04.012
  10. Mendes, C. V. T., Carvalho, M. G. V. S., Baptista, C. M. S. G., Rocha, J. M. S., Soares, B. I. G. and Sousa, G. D. A., "Valorisation of Hardwood Hemicelluloses in the Kraft Pulping Process by Using An Integrated Biorefinery Concept," Food and Bioproducts Processing, 87, 197-207(2009). https://doi.org/10.1016/j.fbp.2009.06.004
  11. Frederick, W. J., "Co-production of Ethanol and Cellulose Fiber from Southern Pine: A Technical and Economic Assessment," Biomass Bioenerg., 32, 1293-1302(2008). https://doi.org/10.1016/j.biombioe.2008.03.010
  12. Um, B. H. and vanWalsum, G. P., "Mass Balance on Green Liquor Pre-pulping Extraction of Northeast Mixed Hardwood," Bioresour. Technol., 101, 5978-5987(2010). https://doi.org/10.1016/j.biortech.2010.03.004
  13. Huang, H. J., Ramaswamy, S., Al-Dajani, W. W. and Tschirner, U. W., "Process Modeling and Analysis of Pulp Mill-based Integrated Biorefinery with Hemicellulose Pre-extraction for Ethanol Production: A Comparative Study," Bioresour. Technol., 101, 624-631(2010). https://doi.org/10.1016/j.biortech.2009.07.092
  14. Al-Dajani, W. W. and Tschirner, U. W., "Pre-extraction of Hemicelluloses and Subsequent Kraft Pulping, Part 1: Alkaline Extraction," Tappi J., 7(6), 3-8 (2008).
  15. Park, Y. C., Kim, J. W. and Kim, J. S., "Pretreatment Characteristics of Ammonia Soaking Method for Cellulosic Biomass," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 49(3), 292-296(2011). https://doi.org/10.9713/kcer.2011.49.3.292
  16. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Tmpleton, D. and Crocker, D., "Determination of Structural Carbohydrates and Lignin in Biomass," National Renewable Energy Laboratory NREL/TP-510-42618 ed. Golden, CO(2010).
  17. Sixta, H., Handbook of Pulp Vol. 1., Wiley-VCH Verlag GmbH & Co., KGaA, Weinheim, Germany(2006).
  18. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J. and Tmpleton, D., "Determination of Sugars, Byproducts, and Degradation Products in Liquid Fraction Process Samples," National Renewable Energy Laboratory NREL/TP-510-42623 ed. Golden, CO, (2008).
  19. Garrote, G., Dominguez, H. and Parajo, J. C., "Generation of Xylose Solution from Eucalyptus Globulus Wood by Autohydrolysis-posthydrolysis Processes: Posthydrolysiskinetics," Bioresour. Technol., 79(2), 155-164(2001). https://doi.org/10.1016/S0960-8524(01)00044-X
  20. Um, B. H., Friedman, B. and vanWalsum, G. P., "Conditioning Harwood-derived Pre-puping Extracts for Use in Fermentation Through Removal and Recovery of Acetic Acid Using Trioctylphosphine Oxide (TOPO)," Holzforschung, 65, 51-58(2011).
  21. Um, B. H. and Bae, S. H., "Statistical Methodology for Optimizing the Dilute Acid Hydrolysis of Sugarcane Bagasse," Korean J. Chem. Eng., 28(5), 1172-1176(2011). https://doi.org/10.1007/s11814-011-0058-9
  22. Gray, M. C., Converse, A. O. and Wyman, C. E., "Sugar Monomer and Oligomer Solubility. Data and Predictions for Application to Biomass Hydrolysis," Appl. Biochem. Biotechnol, 105-108, 179-193(2003).
  23. Dietrichs, H. H., "Behavior of Carbohydrates During Heartwood Formation," Holzforschung, 18(1-2), 14-24(1964). https://doi.org/10.1515/hfsg.1964.18.1-2.14

Cited by

  1. Recovery of Acetic Acid from An Ethanol Fermentation Broth by Liquid-Liquid Extraction (LLE) Using Various Solvents vol.53, pp.6, 2013, https://doi.org/10.9713/kcer.2015.53.6.695