DOI QR코드

DOI QR Code

Comparison of Single Extractions for Evaluation of Heavy Metal Phytoavailability in Soil

토양 중 중금속의 식물유효도 평가를 위한 단일추출법 비교

  • Seo, Byoung-Hwan (Dept. of Agronomy and Medicinal Plant Resources, GNTECH) ;
  • Lim, Ga-Hee (Dept. of Environmental Horticulture, University of Seoul) ;
  • Kim, Kye-Hoon (Dept. of Environmental Horticulture, University of Seoul) ;
  • Kim, Jang-Eok (School of Applied Biosciences, Kyungpook National University) ;
  • Hur, Jang-Hyun (Dept. of Biological Environment, Kangwon National University) ;
  • Kim, Won-Il (National Academy of Agricultural Science, RDA) ;
  • Kim, Kwon-Rae (Dept. of Agronomy and Medicinal Plant Resources, GNTECH)
  • 서병환 (경남과학기술대학교 농학한약자원학부) ;
  • 임가희 (서울시립대학교 환경원예학과) ;
  • 김계훈 (서울시립대학교 환경원예학과) ;
  • 김장억 (경북대학교 응용생물화학부) ;
  • 허장현 (강원대학교 바이오자원환경학과) ;
  • 김원일 (국립농업과학원 화학물질안전과) ;
  • 김권래 (경남과학기술대학교 농학한약자원학부)
  • Received : 2013.08.22
  • Accepted : 2013.09.10
  • Published : 2013.09.30

Abstract

BACKGROUND: Consensus of heavy metal phytoavailability in soils needs to be introduced for soil management protocols in relation to safer food production in the contaminated agricultural soils. For this, setting up the method for evaluation of metal phytoavailability in soil is an essential prerequisite. METHODS AND RESULTS: The current study was carried to select a proper single extraction method for determination of phytoavailable metal concentration in soil. Two extraction methods were examined including 1 M $NH_4NO_3$ extraction and 0.01 M $Ca(NO_3)_2$ extraction methods using 142 soil samples collected from the agricultural soils nearby abandoned mining area in Korea. Corelation analysis was conducted between phytoavailable metal concentrations and soil properties potentially influencing on the metal phytoavailability. Both methods showed similar significance (p<0.001) in correlation with soil properties such as soil pH. However, higher correlation coefficients between phytoavailable metal concentrations and soil properties were observed when used $Ca(NO_3)_2$ extraction rather than using $NH_4NO_3$ extraction. CONCLUSION(S): It appeared that 0.01 M $Ca(NO_3)_2$ extraction was better option for determination of phytoavailable metals in soils and further study to test the efficiency of this method is required in combination with plant uptake.

Keywords

References

  1. Alloway, B.J., 1995. Heavy metals in soils. Blackie Academic & Professional, Glasgow, UK.
  2. Bermond, A., Yousfi, I., Ghestem, J.P., 1998. Kinetic approach to the chemical speciation of trace metals in soils, Analyst 123, 785-789. https://doi.org/10.1039/a707776i
  3. Bingham, F.T., Sposito, G., Strong, J.E., 1984. The effect of chloride on the availability of cadmium. J. Environ. Qual. 13, 71-74.
  4. Bo, V.S., 1986. Verordnung uber Schadstoffgehalt im Boden, Swiss Ordinance on Pollutants in Soils Nr.814.12, Publ. Eidg. Drucksachen und Materialzentrale [EDMZ], 3000 Bern, Switzerland, p. 1.
  5. Chen, Y., Shen, Z., Li, X., 2004. The use of vetiver grass (Vetiveria zizanioides) in the phytoremediation of soils contaminated with heavy metals, Applied Geochem. 19(10), 1553-1565.
  6. DIN (Deutsches Institut fur Normung), 1995. Soil Quality Extraction of Trace Elements with Ammonium Nitrate Solution. DIN 19730. Beuth Verlag, Berlin.
  7. Feng, M.H., Shan, X.Q., Zhang, S., Wen, B., 2005. A comparison of the rhizosphere-based method with DTPA, EDTA, $CaCl_2$, and $NaNO_3$ extraction methods for prediction of bioavailability of metals in soil to barley, Environ. Pollut. 137, 231-240. https://doi.org/10.1016/j.envpol.2005.02.003
  8. Geebelen, W., Vangronsveld, J., Adriano, D.C., Carleer, R., Clijsters, H., 2002. Amendment-induced immobilization of lead in a lead-spiked soil: evidence from phytotoxicity studies, Water Air Soil Pollut. 140, 261-277. https://doi.org/10.1023/A:1020147901365
  9. Hammer, D., Keller, A., 2002. Changes in the rhizosphere of metal-accumulating plants evidenced by chemical extractants, J. Environ. Qual. 31, 1561-1569. https://doi.org/10.2134/jeq2002.1561
  10. Heemsbergen, D.A., Warne, M.S.J., Broos, K., Bell, M., Nash, D., McLaughlin, M., Whatmuff, M., Barry, G. Pritchard, D., Penney, N., 2009. Application of phytotoxicity data to a new Australian soil quality guideline framework for biosolids. Sci. Total Environ. 407, 2546-2556. https://doi.org/10.1016/j.scitotenv.2009.01.016
  11. Houba, V.J.G., Novozamsky, I., Lexmond, T.M., Van der Lee, J.J., 1990. Applicability of 0.01 M $CaCl_2$ as a single extraction solution for the assessment of the nutrient status of soils an other diagnostic purposes, Commun. Soil. Sci. Plant Anal. 21, 2281-2290. https://doi.org/10.1080/00103629009368380
  12. Houba, V.J.G., Lexmond, T.M., Novozamsky, I., Van der Lee, J.J., 1996. State of the art and future developments in soil analysis for bioavailability assessment, Sci. Total Environ. 178, 21-27. https://doi.org/10.1016/0048-9697(95)04793-X
  13. Jackson, A.P., Alloway, B.J., 1991. The bioavailability of cadmium to lettuces and cabbages in soils previously treated with sewage sludges, Plant Soil 132, 179-186.
  14. Kang, S.S., Roh, A.S., Choi, S.C., Kim, Y.S., Kim, H.J., Choi, M.T., Ahn, B.K., Kim, H.W., Kim, H.K., Park, J.H., Lee, Y.H., Yang, S.H., Ryu, J.S., Jang, Y.S., Kim, M.S., Son, Y.K., Lee, C.H., Ha, S.G., Lee, D.B., Kim, Y.H., 2012. Status and changes in chemical properties of paddy soil in Korea. Korean J. Soil Sci. Fert. 45(6), 968-972. https://doi.org/10.7745/KJSSF.2012.45.6.968
  15. Kim, K.R., Kim, J.G., Park, J.S., Kim, M.S., Owens, G., Youn, G.H., Lee, J.S., 2012. Immobilizer-assisted management of metal-contaminated agricultural soils for safer food production, J. Environ. Manage. 102, 88-95. https://doi.org/10.1016/j.jenvman.2012.02.001
  16. Kim, K.R., Owens, G., Naidu, R., Kim K.H., 2007. Assessment Techniques of Heavy Metal Bioavailability in Soil - A critical review, Korean J. Soil Sci. Fert. 40(4), 311-325.
  17. Kim, K.R., Owens, G., Naidu, R., 2009. Heavy metal distribution, bioaccessibility and phytoavailability in long-term contaminated soils from Lake Macquarie, Australia, Aust. J. Soil Res. 47(2), 166-176.
  18. Lebourg, A., Sterckeman, T., Ciesielski, H., Proix, N., 1998. Trace metal speciation in three unbuffered salt solutions used to assess their bioavailability in soil, J. Environ. Qual. 27, 584-590.
  19. Lock, K., Janssen, C.R., 2003. Influence of ageing on zinc bioavailability in soils. Environ. Pollut. 126, 371-374. https://doi.org/10.1016/S0269-7491(03)00232-X
  20. McLaughlin, M.J., Maier, N.A., Correll, R.L., Smart, M.K., Sparrow, L.A., McKay, A., 1999. Prediction of cadmium concentrations in potato tubers (Solanum tuberosum L.) by pre-plant soil and irrigation water analyses, Aust. J. soil Res. 37, 191-207. https://doi.org/10.1071/S98031
  21. Miller, W.P., Miller, M., 1987. A micro pipette method for soil mechanical analysis, Commun. Soil Sci. Plant Anal. 18, 1-15. https://doi.org/10.1080/00103628709367799
  22. NAAS, 2010. Analysis methods for soil chemical properties. NAAS. Suwon. Publication No. 11-1390802-000282-01.
  23. Naidu, R., Kookana, R.S., Sumner, M.E., Harter, R.D., Tiller, K.G., 1997. Cadmium sorption and transport in variable charge soils: a review. J. Environ. Qual. 26, 602-607.
  24. Naidu, R., Megharaj, M., Owens, G., 2003a. Recyclable urban and industrial waste - benefits and problems in agricultural use, in: Schjonning, P., Emholt, S., Christensen, B.T. (Eds), Managing soil quality-challenges in modern agriculture, CABI Publishing, CABI International: Wallingford, UK.
  25. Naidu, R., Rogers, S., Gupta, V.V.S.R., Kookana, R.S., Bolan, N.S., Adriano, D.C., 2003b. Bioavailability of metals in the soil plant environment and its potential role in risk assessment, in: Naidudu, R., Rogers, S., Gupta, V.V.S.R., Kookana, R.S., Bolan, N.S., Adriano, D.C. (Eds), Bioavailability, toxicity and risk relationships in ecosystems, Science Publishers Inc.: New Hampshire.
  26. Nolan, A,L., Zhang, H., McLaughlin, M.J., 2005. Prediction of zinc, cadmium, lead, and copper availability to wheat in contaminated soils using chemical speciation, diffusive gradients in thin films, extraction, and isotopic dilution techniques, J. Environ. Qual. 34, 496-507. https://doi.org/10.2134/jeq2005.0496
  27. Pruess, A., 1997. Action values for mobile ($NH_4NO_3$) trace elements in soils based on the German national standard DIN 19730, in: Prost, R,, (Ed), Contaminated soils. Proc. 3rd Int. Conf. on the Biogeochemistry of Trace Elements. Paris: INRA. p 415-423.
  28. Pueyo, M., Lopez-Sanchez, J.F., Rauret, G., 2004. Assessment of $CaCl_2$, $NaNO_3$ and $NH_4NO_3$ extraction procedures for the study of Cd, Cu, Pb and Zn extractability in contaminated soils, Anal. Chim. Acta 504, 217-226. https://doi.org/10.1016/j.aca.2003.10.047
  29. Ruby, M.W., Davis, A., Link, T.E., Schoof, R., Chaney, R.L., Freeman, G.B., Bergstrom, P., 1993. Development of an in vitro screening test to evaluate the in vivo bioaccessibility of ingested mine-waste lead, Environ. Sci. Technol. 27(13), 2870-2877. https://doi.org/10.1021/es00049a030
  30. Salazar, M.J., Rodriguez, J.H. Nieto, G.L., Pignata, M.L., 2012. Effects of heavy metal concentrations (Cd, Zn and Pb) in agricultural soils near different emission sources on quality, accumulation and food safety in soybean [Glycine max (L.) Merrill]. J. Hazard. Mater. 233-234, 244-253. https://doi.org/10.1016/j.jhazmat.2012.07.026
  31. Schwertmann, U., 1964. The differentiation of iron oxide in soils by a photochemical extraction with acid ammonium oxalate, Z. Pflanzenernahr Dung. Bodenkunde. 105, 194-201. https://doi.org/10.1002/jpln.3591050303
  32. Schwertmann, U., 1973. Use of oxalate for Fe extraction from soils, Can. J. Soil Sci. 53, 244-246. https://doi.org/10.4141/cjss73-037
  33. Tack, F.M.G., Van Ranst, E., Lievens, C., Vandenberghe, R.E., 2006. Soil solution Cd, Cu and Zn concentrations as affected by short-time drying or wetting: The role of hydrous oxides of Fe and Mn. Geoderma. 137(1-2), 83-89. https://doi.org/10.1016/j.geoderma.2006.07.003
  34. Tessier, A., Campbell, P.G., Bisson, M., 1979. Sequential extraction procedures for the specification of particulate trace metals. Anal.Chem. 5, 844-855.
  35. Vig, K., Megharaj, M., Sethunathan, N., Naidu, R., 2003. Bioavailability and toxicity of cadmium to microorganisms and their activities in soil: a review. Adv. Environ. Res. 8, 121-135. https://doi.org/10.1016/S1093-0191(02)00135-1
  36. Wang, Z., Shan, X.Q., Zhang, S., 2002. Comparison between fractionation and bioavailability of trace elements in rhizosphere and bulk soils, Chemosphere 46(8), 1163-1171. https://doi.org/10.1016/S0045-6535(01)00206-5
  37. Wu, L., Tan, C., Liu, L., Zhu, P., Peng, C., Luo, Y., Christie, P., 2012. Cadmium bioavailability in surface soils receiving long-term applications of inorganic fertilizers and pig manure, Geoderma. 173-174, 224-230. https://doi.org/10.1016/j.geoderma.2011.12.003
  38. Yoon, J.K., Kim, D.H., Kim, T.S., Park, J.G., Chung, I.R., Kim, J.H., Kim, H., 2009. Evaluation on Natural Background of the Soil Heavy Metals in Korea, J. Soil & Groundwater Env. 14(3), 32-39.
  39. Zhu, B., Alva, A.K., 1993. Distribution of trace metals in some sandy soils under citrus production, Soil Sci. Soc. Am. J. 57, 350-355. https://doi.org/10.2136/sssaj1993.03615995005700020011x

Cited by

  1. Partitioning of Heavy Metals between Rice Plant and Limestone-stabilized Paddy Soil Contaminated with Heavy Metals vol.20, pp.4, 2015, https://doi.org/10.7857/JSGE.2015.20.4.090
  2. Transfer functions for estimating phytoavailable Cd and Pb in metal contaminated paddy and upland soils: Implications for phytoavailability based land management vol.270, 2016, https://doi.org/10.1016/j.geoderma.2015.11.021
  3. Comparison of Various Single Chemical Extraction Methods for Predicting the Bioavailability of Arsenic in Paddy Soils vol.47, pp.6, 2014, https://doi.org/10.7745/KJSSF.2014.47.6.464
  4. Distribution of Phytoavailable Heavy Metals in the Korean Agricultural Soils Affected by the Abandoned Mining Sites and Soil Properties Influencing on the Phytoavailable Metal Pools vol.47, pp.3, 2014, https://doi.org/10.7745/KJSSF.2014.47.3.191
  5. Comparing Bioavailability of Cadmium and Arsenic in Agricultural Soil Under Varied pH Condition vol.48, pp.1, 2015, https://doi.org/10.7745/KJSSF.2015.48.1.057
  6. Transfer Function for Phytoavailable Heavy Metals in Contaminated Agricultural Soils: The Case of The Korean Agricultural Soils Affected by The Abandoned Mining Sites vol.33, pp.4, 2014, https://doi.org/10.5338/KJEA.2014.33.4.271
  7. Potato absorption and phytoavailability of Cd, Ni, Cu, Zn and Pb in sierozem soils amended with municipal sludge compost vol.10, pp.4, 2018, https://doi.org/10.1007/s40333-018-0062-6