References
-
T. Abualrub and I. Siap, On the construction of cyclic codes over the ring
${\mathbb{Z}}_2+u{\mathbb{Z}}_2$ , WSEAS Trans. Math. 5 (2006), no. 6, 750-755. -
T. Abualrub and I. Siap, Cyclic codes over the rings
${\mathbb{Z}}_2+u{\mathbb{Z}}_2\;and\;{\mathbb{Z}}_2+u{\mathbb{Z}}_2+u^2{\mathbb{Z}}_2$ , Des Codes Cryptogr. 42 (2007), no. 3, 273-287. https://doi.org/10.1007/s10623-006-9034-5 -
M. M. Al-Ashker and M. Hamoudeh, Cyclic codes over
${\mathbb{Z}}_2+u{\mathbb{Z}}_2{\cdot}{\cdot}{\cdot}u^{k-1}{\mathbb{Z}}_2$ , Turk J. Math. 34 (2010), 1-13. - M. Bhaintwal and S. K. Wasan, On quasi-cyclic codes over Zq, Appl. Algebra Engrg. Comm. Comput. 20 (2009), no. 5-6, 459-480. https://doi.org/10.1007/s00200-009-0110-8
- I. F. Blake, Codes over certain rings, Inf. Control 20 (1972), 396-404. https://doi.org/10.1016/S0019-9958(72)90223-9
-
S. T. Dougherty, S. Karadeniz, and B. Yildiz, Cyclic codes over
$R_k$ , Des. Codes Cryptogr. 63 (2012), no. 1, 113-126. https://doi.org/10.1007/s10623-011-9539-4 - S. T. Dougherty, H. Liu, and Y. H. Park, Lifted codes over finite chain rings, Math. J. Okayama Univ. 53 (2011), 39-53.
- D. Eisenbud, Commutative Algebra, Graduate Texts in Mathematics, 150, Springer-Verlag, Berlin, New York, 1995.
- M. Greferath, Cyclic codes over finite rings, Discrete Math. 177 (1997), no. 1-3, 273-277. https://doi.org/10.1016/S0012-365X(97)00006-X
-
A. R. Hammons Jr., P. V. Kumar, A. R. Calderbank, N. J. A. Sloane, and P. Sole, The
$Z_4$ liniarity of Kerdock, Preparata, Goethals and related codes, IEEE Trans. Inform. Theory 40 (1994), no. 2, 301-319. https://doi.org/10.1109/18.312154 - T. W. Hungerford, Algebra, Springer Verlag, New York, 1974.
- B. R. McDonald, Finite Rings with Identity, New York, Marcel Dekker Inc., 1974.
- J. G. Milne, Etale cohomology, Princeton University Press, 1980.
- A. A. Nechaev and T. Honold, Fully weighted modules and representations of codes, (Russian) Problemy Peredachi Informatsii 35 (1999), no. 3, 18-39; translation in Prob-lems Inform.Transmission 35 (1999), no. 3, 205-223.
-
J.-F. Qian, L.-N. Zhang, and A.-X. Zhu, Cyclic codes over
${\mathbb{F}}_p+u{\mathbb{F}}_p+{\cdot}{\cdot}{\cdot}+u^{k-1}{\mathbb{F}}_p$ , IEICE Trans. Fundamentals Vol. E88-A (2005), no. 3, 795-797. https://doi.org/10.1093/ietfec/e88-a.3.795 -
P. Sole and V. Sison, Bounds on the minimum homogeneous distance of the
$p^r$ -ary image of linear block codes over the Galois ring GR($p^r$ ,m), IEEE Trans. Inform. Theory 53 (2007), no. 6, 2270-2273. https://doi.org/10.1109/TIT.2007.896891 - P. Sole and V. Sison, Quaternary convolutional codes from linear block codes over Galois rings, IEEE Trans. Inform. Theory 53 (2007), no. 6, 2267-2270. https://doi.org/10.1109/TIT.2007.896884
-
E. Spiegel, Codes over
$Z_m$ revisited, Inform. and Control 37 (1978), no. 1, 100-104. https://doi.org/10.1016/S0019-9958(78)90461-8 -
B. Yildiz and S. Karadeniz, Cyclic codes over
${\mathbb{F}}_2+u{\mathbb{f}}_2+u{\mathbb{f}}_2+uu{\mathbb{f}}_2$ , Des. Codes Cryptogr. 58 (2011), no. 3, 221-234. https://doi.org/10.1007/s10623-010-9399-3