DOI QR코드

DOI QR Code

Chemiluminescence immunochromatographic analysis for the quantitative determination of algal toxins

  • Pyo, Dongjin (Department of Chemistry, Kangwon National University) ;
  • Kim, Taehoon (Department of Chemistry, Kangwon National University)
  • Received : 2013.07.04
  • Accepted : 2013.08.25
  • Published : 2013.09.15

Abstract

For the quantitative detection of algal toxin, microcystin, a chemiluminescence immunochromatographic assay method was developed. The developed system consists of four parts, chemiluminescence assay strip (nitrocellulose membrane), horse radish peroxidase labeled microcystin monoclonal antibodies, chemiluminescence substrate (luminol and hydrogen peroxide), and luminometer. The performance of the chemiluminescence immunochromatographic assay system was compared with high performance liquid chromatography (HPLC) detection. The detection limit of chemiluminescence immunochromatographic assay system is several orders of magnitude lower than with HPLC. The chemiluminescence immunochromatography and HPLC results correlated very well with the correlation coefficient ($r^2$) of 0.979.

Keywords

References

  1. Agrawal, M. K., Ghosh, S. K., Bagchi, D., Weckesser, J., Erhard, M. & Bagchi, S. N. 2006. Occurrence of microcystin-containing toxic water blooms in Central India. J. Microbiol. Biotechnol. 16:212-218.
  2. Azevedo, S. M. F. O., Carmichael, W. W., Jochimsen, E. M., Rinehart, K. L., Lau, S., Shaw, G. R. & Eaglesham, G. K. 2002. Human intoxication by microcystins during renal dialysis treatment in Caruaru-Brazil. Toxicology 181-182:441-446. https://doi.org/10.1016/S0300-483X(02)00491-2
  3. Campbell, D. L., Lawton, L. A., Beattie, K. A. & Codd, G. A. 1994. Comparative assessment of the specificity of the brine shrimp and microtox assays to hepatotoxic (microcystin-LR-containing) cyanobacteria. Environ. Toxicol. Water Qual. 9:71-77. https://doi.org/10.1002/tox.2530090109
  4. Chu, F. S., Huang, X. & Wei, R. D. 1990. Enzyme-linked immunosorbent assay for microcystins in blue-green algal blooms. J. Assoc. Off. Anal. Chem. 73:451-456.
  5. Eriksson, J. E., Toivola, D., Meriluoto, J. A. O., Karaki, H., Han, Y. -G. & Hartshorne, D. 1990. Hepatocyte deformation induced by cyanobacterial toxins reflects inhibition of protein phosphatases. Biochem. Biophys. Res. Commun. 173:1347-1353. https://doi.org/10.1016/S0006-291X(05)80936-2
  6. Falconer, I. R., Jackson, A. R. B., Langley, J. & Runnegar, M. T. 1981. Liver pathology in mice in poisoning by the blue-green alga Microcystis aeruginosa. Aust. J. Biol. Sci. 34:179-187. https://doi.org/10.1071/BI9810179
  7. Jochimsen, E. M., Carmichael, W. W., An, J. S., Cardo, D. M., Cookson, S. T., Holmes, C. E. M., Antunes, M. B., De Melo Filho, D. A., Lyra, T. M., Barreto, V. S. T., Azevedo, S. M. F. O. & Jarvis, W. R. 1998. Liver failure and death after exposure to microcystins at a hemodialysis center in Brazil. N. Engl. J. Med. 338:873-878. https://doi.org/10.1056/NEJM199803263381304
  8. Khreich, N., Lamourette, P., Lagoutte, B., Ronco, C., Franck, X., Creminon, C. & Volland, H. 2010. A fluorescent immunochromatographic test using immunoliposomes for detecting microcystins and nodularins. Anal. Bioanal. Chem. 397:1733-1742. https://doi.org/10.1007/s00216-009-3348-x
  9. Khreich, N., Lamourette, P., Renard, P. -Y., Clave, G., Fenaille, F., Creminon, C. & Volland, H. 2009. A highly sensitive competitive enzyme immunoassay of broad specificity quantifying microcystins and nodularins in water samples. Toxicon 53:551-559. https://doi.org/10.1016/j.toxicon.2008.12.021
  10. Mayumi, T., Kato, H., Imanishi, S., Kawasaki, Y., Hasegawa, M. & Harada, K. 2006. Structural characterization of microcystins by LC/MS/MS under ion trap conditions. J. Antibiot. 59:710-719. https://doi.org/10.1038/ja.2006.95
  11. Meriluoto, J. 1997. Chromatography of microcystins. Anal. Chim. Acta 352:277-298. https://doi.org/10.1016/S0003-2670(97)00131-1
  12. McElhiney, J. & Lawton, L. A. 2005. Detection of the cyanobacterial hepatotoxins microcystins. Toxicol. Appl. Pharmacol. 203:219-230. https://doi.org/10.1016/j.taap.2004.06.002
  13. Lawton, L. A., Edwards, C. & Codd, G. A. 1994. Extraction and high-performance liquid chromatographic method for the determination of microcystins in raw and treated waters. Analyst 119:1525-1530. https://doi.org/10.1039/an9941901525
  14. Ngom, B., Guo, Y., Wang, X. & Bi, D. 2010. Development and application of lateral flow test strip technology for detection of infectious agents and chemical contaminants: a review. Anal. Bioanal. Chem. 397:1113-1135. https://doi.org/10.1007/s00216-010-3661-4
  15. Pyo, D., Choi, E., Cha, G. S., Lee, J., Jung, S. & Kim, M. S. 2003. Production and characterization of monoclonal antibodies against microcystin LR. Bull. Korean Chem. Soc. 24:126-128. https://doi.org/10.5012/bkcs.2003.24.1.126
  16. Pyo, D., Lee, J. & Choi, E. 2004. Enzyme-linked immunosorbent assay detection of microcystins using new monoclonal antibodies. J. Immunoassay Immunochem. 25:227-239. https://doi.org/10.1081/IAS-200028013
  17. Pyo, D. & Moon, D. 2005. Adsorption of microcystin LR by activated carbon fibers. Bull. Korean Chem. Soc. 26:2089-2092. https://doi.org/10.5012/bkcs.2005.26.12.2089
  18. Pyo, D. & Yoo, J. 2007. Determination of microcystins in cyanobacteria by supercritical fluid extraction and liquid chromatography-tandem mass spectrometry. Anal. Lett. 40:3208-3218. https://doi.org/10.1080/00032710701672673
  19. Sheng, J. W., He, M. & Shi, H. C. 2007. A highly specific immunoassay for microcystin-LR detection based on a monoclonal antibody. Anal. Chim. Acta 603:111- 118. https://doi.org/10.1016/j.aca.2007.09.029
  20. Sheng, J. W., He, M., Shi, H. C. & Qian, Y. 2006. A comprehensive immunoassay for the detection of microcystinsins in waters based on polyclonal antibodies. Anal. Chim. Acta 572:309-315. https://doi.org/10.1016/j.aca.2006.05.040
  21. Spoof, L., Karlsson, K. & Meriluoto, J. 2001. High-performance liquid chromatographic separation of microcystins and nodularin, cyanobacterial peptide toxins, on $C_18$ and amide $C_16$ sorbents. J. Chromatogr. A 909:225-236. https://doi.org/10.1016/S0021-9673(00)01099-2
  22. Young, F. M., Metcalf, J. S., Meriluoto, J. A. O., Spoof, L., Morrison, L. F. & Codd, G. A. 2006. Production of antibodies against microcystin-RR for the assessment of purified microcystins and cyanobacterial environmental samples. Toxicon 48:295-306. https://doi.org/10.1016/j.toxicon.2006.05.015
  23. Zhang, J., Lei, J., Pan, R., Leng, C., Hu, Z. & Ju, H. 2011. In situ assembly of gold nanoparticles on nitrogen-doped carbon nanotubes for sensitive immunosensing of microcystin-LR. Chem. Commun. 47:668-670. https://doi.org/10.1039/c0cc04198j

Cited by

  1. Gold nanomaterials for the selective capturing and SERS diagnosis of toxins in aqueous and biological fluids vol.91, 2017, https://doi.org/10.1016/j.bios.2017.01.032
  2. Immunochromatographic tests for the detection of microcystin-LR toxin in water and fish samples vol.12, pp.3, 2013, https://doi.org/10.1039/c9ay01970g
  3. Immunochromatographic Test Systems for Detection of Microcystin-LR in Seafood vol.57, pp.3, 2013, https://doi.org/10.1134/s0003683821030170
  4. Ultrasensitive lateral flow immunoassay of phycotoxin microcystin-LR in seafood based on magnetic particles and peroxidase signal amplification vol.133, pp.no.pb, 2022, https://doi.org/10.1016/j.foodcont.2021.108655