DOI QR코드

DOI QR Code

STRONG CONVERGENCE OF A MODIFIED ISHIKAWA ITERATIVE ALGORITHM FOR LIPSCHITZ PSEUDOCONTRACTIVE MAPPINGS

  • Osilike, M.O. (Department of Mathematics, University of Nigeria) ;
  • Isiogugu, F.O. (Department of Mathematics, University of Nigeria) ;
  • Attah, F.U. (Department of Mathematics, University of Nigeria)
  • Received : 2012.09.02
  • Accepted : 2012.10.11
  • Published : 2013.05.30

Abstract

Let H be a real Hilbert space and let T : H ${\rightarrow}$ H be a Lipschitz pseudocontractive mapping. We introduce a modified Ishikawa iterative algorithm and prove that if $F(T)=\{x{\in}H:Tx=x\}{\neq}{\emptyset}$, then our proposed iterative algorithm converges strongly to a fixed point of T. No compactness assumption is imposed on T and no further requirement is imposed on F(T).

Keywords

References

  1. F.E. Browder and W.V. Petryshyn, Construction of fixed points of nonlinear mappings in Hilbert spaces, J. Math. Anal. Appl. 20 (1967) 197-228. https://doi.org/10.1016/0022-247X(67)90085-6
  2. S.A. Naimpally and K.L. Singh, Extensions of some fixed point theorems of Rhoades, J. Math. Anal. Appl. 96 (1983), 437-446. https://doi.org/10.1016/0022-247X(83)90052-5
  3. T.L. Hicks, J.D. Kubicek, On the Mann iteration process in a Hilbert spaces, J. Math. Anal. Appl. 59 (1977) 498-504. https://doi.org/10.1016/0022-247X(77)90076-2
  4. S. Maruster, Sur le calcul des zeros dun operateur discontinu par iteration, Canad. Math. Bull. 16 (4) (1973) 541-544. https://doi.org/10.4153/CMB-1973-088-7
  5. S. Maruster, The solution by iteration of nonlinear equations in Hilbert spaces, Proc. Amer. Math Soc. 63 (1) (1977) 69-73.
  6. C.E. Chidume, S. Maruster, Iterative methods for the computation of fixed points of demi-contractive mappings, J. Comput. Appl. Math. 234 (3) (2010) 861-882. https://doi.org/10.1016/j.cam.2010.01.050
  7. D. Boonchari, S. Saejung, Construction of common fixed points of a countable family of ${\lambda}$-demicontractive mappings in arbitrary Banach spaces, Appl. Math. Comput. 216 (2010) 173-178. https://doi.org/10.1016/j.amc.2010.01.027
  8. L. Maruster and S. Maruster, Strong convergence of the Mann iteration for ${\alpha}$-demicontractive mappings, Math. Comput. Model. 54 (2011) 2486-2492. https://doi.org/10.1016/j.mcm.2011.06.006
  9. C.E. Chidume and S.A. Mutangadura, An example on the Mann iteration method for Lipschitz pseudocontractions. Proc. Amer. Math. Soc. 129 (2001) 2359-2363.
  10. G. Marino, H.-K. Xu, Weak and strong convergence theorems for strict pseudo-contractions in Hilbert spaces, J. Math. Anal. Appl. 329 (2007) 336-346. https://doi.org/10.1016/j.jmaa.2006.06.055
  11. A. Genel, J. Lindenstraus, An example concerning fixed points, Israel J. Math. 22 (1) (1975) 81-86. https://doi.org/10.1007/BF02757276
  12. Y. Yao, H. Zhou, Y.-C. Liou, Strong convergence of a modified KrasnoselskiMann iterative algorithm for non-expansive mappings, J. Appl. Math. Comput. 29 (2009) 383-389. https://doi.org/10.1007/s12190-008-0139-z
  13. P.E. Mainge, Regularized and inertial algorithms for common fixed points of nonlinear operators, J. Math. Anal. Appl. 344 (2008) 876-887. https://doi.org/10.1016/j.jmaa.2008.03.028
  14. P.E. Mainge, S. Maruster, Convergence in norm of modified Krasnoselski-Mann iterations for fixed points of demicontractive mappings, Appl. Math. Comput. 217 (24) (2011) 9864-9874. https://doi.org/10.1016/j.amc.2011.04.068
  15. S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc. 44 (1974) 147-150.
  16. M.O. Osilike and D.I. Igbokwe, Weak and Strong Convergence Theorems for Fixed Points of Pseudocontractions and Solutions of Monotone Type Operator Equations, Comput. Math. Appli. 40 (2000), 559-567. https://doi.org/10.1016/S0898-1221(00)00179-6
  17. H. Zegeye, N. Shahzad, M.A. Alghamdi, Convergence of Ishikawas iteration method for pseudocontractive mappings, Nonlinear Anal. 74 (2011) 7304-7311. https://doi.org/10.1016/j.na.2011.07.048
  18. Q. Liu, The convergence theorems of the sequence of Ishikawa iterates for hemicontractive mappings, J. Math. Anal. Appl. 148 (1990) 55-62. https://doi.org/10.1016/0022-247X(90)90027-D
  19. C.E. Chidume and C. Moore, Fixed point iteration for pseudocontractive maps, Proc. Amer. Math. Soc. 127 (1999) 1163-1170.
  20. Q. Liu, On Naimpally and Singhs open question, J. Math. Anal. Appl. 124 (1987) 157-164. https://doi.org/10.1016/0022-247X(87)90031-X
  21. H. Zhou, Convergence theorems of fixed points for Lipschitz pseudo-contractions in Hilbert spaces, J. Math. Anal. Appl. 343 (2008) 546-556. https://doi.org/10.1016/j.jmaa.2008.01.045
  22. Y.H. Yao, Y.C. Liou and G. Marino, A hybrid algorithm for pseudo-contractive mappings, Nonlinear Anal. 71 (2009) 4997-5002. https://doi.org/10.1016/j.na.2009.03.075
  23. Y.C. Tang, J.G. Peng and L.W. Liu, Strong convergence theorem for pseudocontractive mappings in Hilbert spaces, Nonlinear Anal. 74 (2011) 380-385. https://doi.org/10.1016/j.na.2010.08.048
  24. Qing-bang Zhang and Cao-zong Cheng, Strong convergence theorem for a family of Lipschitz pseudocontractive mappings in a Hilbert space, Math. Comput. Modelling 48 (2008) 480-485. https://doi.org/10.1016/j.mcm.2007.09.014

Cited by

  1. Fixed points of a new class of pseudononspreading mappings vol.57, pp.1, 2019, https://doi.org/10.2478/awutm-2019-0008