References
- F.E. Browder and W.V. Petryshyn, Construction of fixed points of nonlinear mappings in Hilbert spaces, J. Math. Anal. Appl. 20 (1967) 197-228. https://doi.org/10.1016/0022-247X(67)90085-6
- S.A. Naimpally and K.L. Singh, Extensions of some fixed point theorems of Rhoades, J. Math. Anal. Appl. 96 (1983), 437-446. https://doi.org/10.1016/0022-247X(83)90052-5
- T.L. Hicks, J.D. Kubicek, On the Mann iteration process in a Hilbert spaces, J. Math. Anal. Appl. 59 (1977) 498-504. https://doi.org/10.1016/0022-247X(77)90076-2
- S. Maruster, Sur le calcul des zeros dun operateur discontinu par iteration, Canad. Math. Bull. 16 (4) (1973) 541-544. https://doi.org/10.4153/CMB-1973-088-7
- S. Maruster, The solution by iteration of nonlinear equations in Hilbert spaces, Proc. Amer. Math Soc. 63 (1) (1977) 69-73.
- C.E. Chidume, S. Maruster, Iterative methods for the computation of fixed points of demi-contractive mappings, J. Comput. Appl. Math. 234 (3) (2010) 861-882. https://doi.org/10.1016/j.cam.2010.01.050
-
D. Boonchari, S. Saejung, Construction of common fixed points of a countable family of
${\lambda}$ -demicontractive mappings in arbitrary Banach spaces, Appl. Math. Comput. 216 (2010) 173-178. https://doi.org/10.1016/j.amc.2010.01.027 -
L. Maruster and S. Maruster, Strong convergence of the Mann iteration for
${\alpha}$ -demicontractive mappings, Math. Comput. Model. 54 (2011) 2486-2492. https://doi.org/10.1016/j.mcm.2011.06.006 - C.E. Chidume and S.A. Mutangadura, An example on the Mann iteration method for Lipschitz pseudocontractions. Proc. Amer. Math. Soc. 129 (2001) 2359-2363.
- G. Marino, H.-K. Xu, Weak and strong convergence theorems for strict pseudo-contractions in Hilbert spaces, J. Math. Anal. Appl. 329 (2007) 336-346. https://doi.org/10.1016/j.jmaa.2006.06.055
- A. Genel, J. Lindenstraus, An example concerning fixed points, Israel J. Math. 22 (1) (1975) 81-86. https://doi.org/10.1007/BF02757276
- Y. Yao, H. Zhou, Y.-C. Liou, Strong convergence of a modified KrasnoselskiMann iterative algorithm for non-expansive mappings, J. Appl. Math. Comput. 29 (2009) 383-389. https://doi.org/10.1007/s12190-008-0139-z
- P.E. Mainge, Regularized and inertial algorithms for common fixed points of nonlinear operators, J. Math. Anal. Appl. 344 (2008) 876-887. https://doi.org/10.1016/j.jmaa.2008.03.028
- P.E. Mainge, S. Maruster, Convergence in norm of modified Krasnoselski-Mann iterations for fixed points of demicontractive mappings, Appl. Math. Comput. 217 (24) (2011) 9864-9874. https://doi.org/10.1016/j.amc.2011.04.068
- S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc. 44 (1974) 147-150.
- M.O. Osilike and D.I. Igbokwe, Weak and Strong Convergence Theorems for Fixed Points of Pseudocontractions and Solutions of Monotone Type Operator Equations, Comput. Math. Appli. 40 (2000), 559-567. https://doi.org/10.1016/S0898-1221(00)00179-6
- H. Zegeye, N. Shahzad, M.A. Alghamdi, Convergence of Ishikawas iteration method for pseudocontractive mappings, Nonlinear Anal. 74 (2011) 7304-7311. https://doi.org/10.1016/j.na.2011.07.048
- Q. Liu, The convergence theorems of the sequence of Ishikawa iterates for hemicontractive mappings, J. Math. Anal. Appl. 148 (1990) 55-62. https://doi.org/10.1016/0022-247X(90)90027-D
- C.E. Chidume and C. Moore, Fixed point iteration for pseudocontractive maps, Proc. Amer. Math. Soc. 127 (1999) 1163-1170.
- Q. Liu, On Naimpally and Singhs open question, J. Math. Anal. Appl. 124 (1987) 157-164. https://doi.org/10.1016/0022-247X(87)90031-X
- H. Zhou, Convergence theorems of fixed points for Lipschitz pseudo-contractions in Hilbert spaces, J. Math. Anal. Appl. 343 (2008) 546-556. https://doi.org/10.1016/j.jmaa.2008.01.045
- Y.H. Yao, Y.C. Liou and G. Marino, A hybrid algorithm for pseudo-contractive mappings, Nonlinear Anal. 71 (2009) 4997-5002. https://doi.org/10.1016/j.na.2009.03.075
- Y.C. Tang, J.G. Peng and L.W. Liu, Strong convergence theorem for pseudocontractive mappings in Hilbert spaces, Nonlinear Anal. 74 (2011) 380-385. https://doi.org/10.1016/j.na.2010.08.048
- Qing-bang Zhang and Cao-zong Cheng, Strong convergence theorem for a family of Lipschitz pseudocontractive mappings in a Hilbert space, Math. Comput. Modelling 48 (2008) 480-485. https://doi.org/10.1016/j.mcm.2007.09.014
Cited by
- Fixed points of a new class of pseudononspreading mappings vol.57, pp.1, 2019, https://doi.org/10.2478/awutm-2019-0008