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STRONG CONVERGENCE OF A MODIFIED ISHIKAWA

ITERATIVE ALGORITHM FOR LIPSCHITZ

PSEUDOCONTRACTIVE MAPPINGS

M.O. OSILIKE∗, F.O. ISIOGUGU AND F.U. ATTAH

Abstract. Let H be a real Hilbert space and let T : H → H be a Lipschitz

pseudocontractive mapping. We introduce a modified Ishikawa iterative
algorithm and prove that if F (T ) = {x ∈ H : Tx = x} ≠ ∅, then our
proposed iterative algorithm converges strongly to a fixed point of T . No
compactness assumption is imposed on T and no further requirement is

imposed on F (T ).

AMS Mathematics Subject Classification : 47J25, 47H09, 65J15.
Key words and phrases : Pseudocontractive maps, fixed points, Ishikawa
iteration, strong convergence, Hilbert spaces.

1. Introduction

Let H be a real Hilbert space with inner product ⟨., .⟩ and induced norm ||.||.
Let C be a nonempty closed convex subset of H. A mapping T : C → C is said
to be L-Lipschitzian if there exists L ≥ 0 such that

||Tx− Ty|| ≤ L||x− y||, ∀x, y ∈ C. (1.1)

T is said to be a contraction if L ∈ [0, 1) and T is said to be nonexpansive if
L = 1. T is said to be pseudocontractive in the terminology of Browder and
Petryshyn [1] if

||Tx− Ty||2 ≤ ||x− y||2 + ||x− Tx− (y − Ty)||2, ∀x, y ∈ C. (1.2)

It is easy to verify that (1.1) is equivalent to the monotonicity condition

⟨(I − T )x− (I − T )y, x− y⟩ ≥ 0, ∀x, y ∈ C, (1.3)
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where I is the identity operator. Inequalities (1.2) and (1.3) are also equivalent
to the inequality

⟨Tx− Ty, x− y⟩ ≤ ||x− y||2, ∀x, y ∈ C. (1.4)

An important proper subclass of the class of pseudocontractive mappings is
the class of k-strictly pseudocontractive mappings. T is said to be k-strictly
pseudocontractive (see for example [1]) if there exists k ∈ [0, 1) such that

||Tx− Ty||2 ≤ ||x− y||2 + k||x− Tx− (y − Ty)||2, ∀x, y ∈ C (1.5)

It is well known that if T is k-strictly pseudocontractive, then T is Lipschitz

with Lipschitz constant L = 1+
√
k

1−
√
k
.

If F (T ) = {x ∈ C : Tx = x} ̸= ∅ and inequality (1.2) (or (1.3) or (1.4)) is
satisfied for all x ∈ C and for all y ∈ F (T ), then T is said to be hemicontractive
(see for example [2]). T is said to be demicontractive if F (T ) ̸= ∅ and inequality
(1.5) is satisfied for some k ∈ [0, 1) and for all x ∈ C, and y ∈ F (T ). T is said
to be demiclosed at p if whenever {xn}∞n=1 is a sequence in C which converges
weakly to x∗ ∈ C and {Txn}∞n=1 converges strongly to p, then Tx∗ = p.

The Mann iteration scheme {xn}∞n=1 generated from an arbitrary x1 ∈ C by

xn+1 = (1− αn)xn + αnTxn, n ≥ 1, (1.6)

where the control sequence {αn}∞n=1 is a real sequence in [0, 1] satisfying some
appropriate conditions has been used by several authors for the approximation
of fixed points of nonexpansive maps, strictly pseudocontractive maps and demi-
contractive maps (see for example [1-8]). It is now well known (see for example
[9]) that Mann iteration scheme may not in general be applicable for the itera-
tive construction of fixed points of a Lipschitz pseudocontractive map in Hilbert
spaces. For Lipschitz pseudocontractive maps, the Ishikawa iteration sequence
{xn}∞n=1 generated from arbitrary x1 ∈ C by

xn+1 = (1− αn)xn + αnT [(1− βn)xn + βnTxn], n ≥ 1, (1.7)

where {αn} and {βn} are control sequences in [0, 1] is usually applicable.
In real Hilbert spaces, one of the most general well known convergence the-

orem using the Mann iteration algorithm for the class of k-strictly pseudocon-
tractive mappings is the following.

Theorem 1.1 ([10]). Let H be a real Hilbert space and let C be a nonempty
closed convex subset of H. Let T : C → C be a k−strictly pseudocontractive
map with a nonempty fixed point set F (T ) and let {αn}∞n=1 be a real sequence in
(0, 1−k) satisfying the conditions (i) lim

n→∞
αn = 0 (ii)

∑∞
n=1 αn(1−αn−k) =

∞. Then the Mann iteration algorithm {xn}∞n=1 converges weakly to a fixed point
of T .

If k = 0 in Theorem 1.1, we obtain weak convergence theorem for nonexpan-
sive maps.
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To obtain strong convergence of Mann to a fixed of a k-strictly pseudocontrac-
tive maps or even a nonexpansive map in the setting of Theorem 1.1, additional
conditions are usually required on T or the subset C (see for example [1-8]). In
[11], Genel and Lindenstraus provided an example of a nonexpansive mapping
defined on a bounded closed convex subset of a Hilbert space for which the Mann
iteration does not converge to a fixed point of T .

Recently Yao, Zhou and Liou [12] (see also [13]) studied a modified Mann
iteration algorithm and proved strong convergence of the modified algorithm to
a fixed point of a nonexpansive mapping in real Hilbert spaces. They proved the
following.

Theorem 1.2 Let H be a real Hilbert space. Let T : H → H be a non-expansive
mapping with F (T ) ̸= ∅. Let {tn}∞n=1 and {αn}∞n=1 be two real sequences in
[0, 1]. Assume the following conditions are satisfied:
(c1) lim

n→∞
tn = 0;

(c2)
∑∞

n=1 tn = ∞;
(c3) αn ∈ [a, b] ⊂ (0, 1).
Then the modified Mann iteration sequence {xn}∞n=1 generated from an arbitrary
x1 ∈ H by

xn+1 = (1− αn)(1− tn)xn + αnT [(1− tn)xn], n ≥ 1 (1.8)

converges strongly to a fixed point of T .
Observe that {xn} can be expressed in the form{

νn = (1− tn)xn

xn+1 = (1− αn)νn + αnTνn.
(1.9)

Clearly, the modified Mann iteration algorithm reduces to the normal Mann
iteration algorithm when tn ≡ 0.

More recently, Paul-Emile Maingé and Ştefan Mǎruşter [14] employed the
modified Mann algorithm (1.8) and proved that it converges strongly to a fixed
point of a demicontractive map in real Hilbert spaces. They proved the following:

Theorem 1.3 Let H be a real Hilbert space and let T : H → H be a demicon-
tractive map with constant k ∈ [0, 1) and let (I − T ) be demiclosed at 0. Let
{tn}∞n=1 and {αn}∞n=1 be two real numbers in [0, 1]. Assume the following con-
ditions are satisfied:
(c1) lim

n→∞
tn = 0;

(c2)
∑∞

n=1 tn = ∞;
(c3) {αn} ⊂ (0, b], with 0 < b < 1− k;
(c4) lim

n→∞
tn
αn

= 0.

Then the modified Mann iteration sequence {xn}∞n=1 generated from an x1 ∈ H
by (1.8) converges strongly to PF (T )(0) the least norm element of F (T ).
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For L-Lipschitzian pseudocontractive maps for which the Ishikawa algorithm
rather than the Mann algorithm has been applicable, Ishikawa [15] first proved
the following:

Theorem 1.4 Let C be a nonempty compact subset of a real Hilbert space H
and T : C → C an L-Lipschitzian pseudocontractive mapping. Let {αn}∞n=1 and
{βn}∞n=1 be real sequences satisfying the conditions:
(i) 0 ≤ αn ≤ βn < 1; (ii) lim

n→∞
βn = 0; (iii)

∑∞
n=1 αnβn = ∞. Then the

Ishikawa iteration sequence {xn}∞n=1 generated from an arbitrary x1 ∈ C by
(1.7) converges strongly to a fixed point of T .

Since the appearance of Theorem 1.4, many authors have extended it in vari-
ous forms (see for example [16-23]). However, strong convergence have not been
achieved without compactness assumption on T or C; or other requirements on
the set of fixed point F (T ); or complete modification of the scheme to a hybrid
algorithm (see for examples [16-23]). Recently, Zegeye, Shahzad and Alghamdi
[17] assumed that the interior of F (T ) is nonempty (intF (T ) ̸= ∅) to achieve
strong convergence when T is a self mapping of a nonempty closed convex subset
of a real Hilbert space. This appears very restrictive since even in ℜ with the
usual norm, Lipschitz pseudocontractive maps with finite number of fixed points
do not enjoy this condition that intF (T ) ̸= ∅.

It is our purpose in this paper to complement Yao, Xu and Liou [12]; and
Maingé and Mǎruşter [14] by introducing a modified Ishikawa iteration algorithm
analogous to the modified Mann iteration algorithm studied in [12] and [14]. We
further prove that our modified Ishikawa algorithm converges strongly to a fixed
point of a Lipschitz pseodocontive map in real Hilbert spaces.

2. Preliminaries

In what follows, we shall need the following results.
Lemma 2.1 ([Kolmogorov Criterium]). Let C be a closed convex subset of a
real Hilbert space H and let x be a point in H. Let PC(x) denote the projection
of x onto C. Then z = PC(x) if and only if ⟨x− z, z − y⟩ ≥ 0, ∀y ∈ C.

Lemma 2.1 ([24]). Let H be a real Hilbert space, C a closed convex subset of
H and T : C → C a continuous pseudocontractive mapping, then
(i) F (T ) is a closed convex subset of C.
(ii) (I − T ) is demiclosed at zero.

Lemma 2.2 ([14]). Let {an} be a sequence of nonnegative numbers such that
an+1 ≤ (1 − λn)an + λnrn, where {rn} is a bounded sequence of real numbers
and {λn} ⊂ [0, 1] satisfies

∑∞
n=1 λn = ∞. Then lim sup

n→∞
an ≤ lim sup

n→∞
rn.

3. Main results

We now introduce the following modified form of the Ishikawa algorithm:
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Modified Ishikawa Algorithm. Let H be a real Hilbert space and let T :
H → H be a giving mapping. For arbitrary x1 ∈ H our modified Ishikawa
iteration sequence {xn} is given by

xn+1 = (1−αn)(1− tn)xn +αnT
[
(1− βn)(1− tn)xn + βnT [(1− tn)xn]

]
, n ≥ 1

(3.1)
where {tn}, {αn} and {βn} are real sequences in [0, 1] satisfying some appropriate
conditions that will be made precise in our strong convergence theorem. Observe
that (3.1) can be written in the form νn = (1− tn)xn

yn = (1− βn)νn + βnTνn,
xn+1 = (1− αn)νn + αnTyn.

(3.2)

Observe that as in the case of the modified Mann iteration algorithm of [12]
and [14], our modified Ishikawa iteration scheme reduces to the normal Ishikawa
iteration when tn ≡ 0.

We now prove the following strong convergence theorems which applies for
L-Lipschitzian pseudocontractive maps in real Hilbert spaces.

Theorem 3.1 Let H be a real Hilbert space and let T : H → H be an L-
Lipschitzian hemicontractive map such that (I − T ) is demiclosed at 0. Let
{tn}∞n=1, {αn}∞n=1 and {βn} be sequences in (0, 1) satisfying the conditions
(c1) lim

n→∞
tn = 0;

(c2)
∑∞

n=1 tn = ∞;
(c3) αn ≤ βn, n ≥ 1; and 0 < ϵ ≤ βn ≤ b < 1 for some ϵ > 0 and for some

b ∈
(
0, 1√

1+L2+1

)
;

(c4) lim
n→∞

tn
αn

= 0.

Then the modified Ishikawa iteration sequence {xn}∞n=1 generated from an x1 ∈
H by (3.1) converges strongly to PF (T )(0) the least norm element of F (T ).

Proof. Using the form (3.2) we set Gnνn := T [(1−βn)νn+βnTνn], n ≥ 1. Then
using the Lipschitz property of T and the well known identity

||(1− t)x+ ty||2 = (1− t)||x||2 + t||y||2 − t(1− t)||x− y||2 (3.3)

which holds for all x, y in H and for all t in [0, 1] we obtain for arbitrary p ∈ F (T )
that

||Gnνn − p||2 = ||T [(1− βn)νn + βnTνn]− p||2

≤ ||(1− βn)νn + βnTνn − p||2 + ||(1− βn)νn + βnTνn −Gnνn||2

= ||(1− βn)(νn − p) + βn(Tνn − p)||2

+||(1− βn)(νn −Gnνn) + βn(Tνn − T [(1− βn)νn + βnTνn])||2

= (1− βn)||νn − p||2 + βn||Tνn − p||2 − βn(1− βn)||νn − Tνn||2

+(1− βn)||νn −Gnνn||2
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+βn||Tνn − T [(1− βn)νn + βnTνn]||2

−βn(1− βn)||νn − Tνn||2

≤ ||νn − p||2 + βn||νn − Tνn||2 − βn(1− βn)||νn − Tνn||2

+(1− βn)||νn −Gnνn||2 + L2β3
n||νn − Tνn||2

−βn(1− βn)||νn − Tνn||2

= ||νn − p||2 + (1− βn)||νn −Gnνn||2

−βn[1− 2βn − β2
nL

2]||νn − Tνn||2. (3.4)

Using (3.4) we obtain for arbitrary p ∈ F (T ) that

||xn+1 − p||2 = ||(1− αn)(νn − p) + αn(Gnνn − p)||2

= (1− αn)||νn − p||2 + αn||Gnνn − p||2

−αn(1− αn)||νn −Gnνn||2

≤ (1− αn)||νn − p||2 + αn

[
||νn − p||2

+(1− βn)||νn −Gnνn||2 − βn(1− 2βn − β2
nL

2)||νn − Tνn||2
]

−αn(1− αn)||νn −Gnνn||2

= ||νn − p||2 − αn(βn − αn)||νn −Gnνn||2

−αnβn[1− 2βn − β2
nL

2]||νn − Tνn||2. (3.6)

Since αn ≤ βn, ∀n ≥ 1, we obtain

||xn+1 − p||2 ≤ ||νn − p||2 − αnβn[1− 2βn − β2
nL

2]||νn − Tνn||2. (3.7)

From (3.2) we obtain 1
αn

(νn − xn+1) = νn −Gnνn. Hence

1

αn
||νn − xn+1|| = ||νn −Gnνn||

≤ ||νn − Tνn||+ ||Tνn −Gnνn||
≤ ||νn − Tνn||+ Lβn||νn − Tνn||
= [1 + Lβn]||νn − Tνn||.

Thus
1

αn(1 + Lβn)
||νn − xn+1|| ≤ ||νn − Tνn||. (3.8)

Using (3.8) in (3.7) we obtain

||xn+1 − p||2 ≤ ||νn − p||2 − λn||νn − xn+1||2, (3.9)

where

λn :=
βn[1− 2βn − L2β2

n]

αn(1 + Lβn)2
≥ ϵ[1− 2b− L2b2]

b(1 + Lb)2
> 0.

Furthermore, it follows from (3.2) and (3.9) that

||xn+1 − p|| ≤ ||νn − p|| ≤ (1− tn)||xn − p||+ tn||p||,
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and this yields

||xn+1 − p|| ≤ max{||x1 − p||, ||p||}.

Hence {xn}∞n=1 is a bounded sequence.
It also follows from (3.2) that

||νn − p||2 = ||(1− tn)(xn − p)− tnp||2

= (1− tn)
2||xn − p||2 + t2n||p||2 − 2tn(1− tn)⟨xn − p, p⟩

≤ (1− tn)||xn − p||2 + t2n||p||2 − 2tn(1− tn)⟨xn − p, p⟩. (3.10)

Using (3.10) in (3.9) we obtain

||xn+1 − p||2 ≤ (1− tn)||xn − p||2 + t2n||p||2 − 2tn(1− tn)⟨xn − p, p⟩
−λn||νn − xn+1||2

= (1− tn)||xn − p||2 − tn

[
−tn||p||2 + 2(1− tn)⟨xn − p, p⟩

+
λn

tn
||νn − xn+1||2

]
= (1− tn)||xn − p||2 − tnZn, (3.11)

where

Zn := −tn||p||2 + 2(1− tn)⟨xn − p, p⟩+ λn

tn
||νn − xn+1||2. (3.12)

Thus,

||xn+1 − p||2 ≤ (1− tn)||xn − p||2 − tnZn. (3.13)

Observe that

−Zn = tn||p||2 − 2(1− tn)⟨xn − p, p⟩ − λn

tn
||νn − xn+1||2

≤ ||p||2 + 2||xn − p||||p|| ≤ D1, for some D1, since {xn} is bounded.

It thus follows that {Zn} is bounded below since {xn} is bounded. From (3.13),
Lemma 2.3 and condition (c2) of our theorem we obtain

lim sup
n→∞

||xn − p||2 ≤ lim sup
n→∞

(−Zn) = − lim inf
n→∞

Zn. (3.14)

Thus lim inf
n→∞

Zn is a finite real number. Since lim
n→∞

tn = 0, it follows from (3.12)

that

lim inf
n→∞

Zn = lim inf
n→∞

[
2⟨xn − p, p⟩+ λn

tn
||νn − xn+1||2

]
.

Since {xn} is bounded, there exists a subsequence {xnk
}∞k=1 of {xn} such that

lim inf
n→∞

Zn = lim
k→∞

[
2⟨xnk

− p, p⟩+ λnk

tnk

||νnk
− xnk+1||2

]
. (3.15)
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Since {xn} is bounded and lim inf
n→∞

Zn is finite, it follows that
λnk

tnk
||νnk

−xnk+1||2

is bounded. Observe that since

λn

tn
=

βn[1− 2βn − L2β2
n]

αntn(1 + Lβn)2
≥ ϵ[1− 2b− L2b2]

αntn(1 + Lb)2
,

then
1

αntn
≤ (1 + Lb)2λn

ϵ[1− 2b− L2L2]tn
.

Thus

1

αnk
tnk

||νnk
− xnk+1||2 ≤ (1 + Lb)2

ϵ[1− 2b− L2b2]

λnk

tnk

||vnk
− xnk+1||2.

Hence 1
αnk

tnk
||νnk

− xnk+1||2 is bounded. Observe that from (3.2) we have
1
αn

(νn − xn+1) = νn −Gnνn. Hence

1

αn
||νn − xn+1|| = ||νn −Gnνn||

≥
∣∣∣||νn − Tνn|| − ||Tνn −Gnνn||

∣∣∣
≥ ||νn − Tνn|| − Lβn||νn − Tνn||
= [1− Lβn]||νn − Tνn||.

Thus

||νn − Tνn|| ≤
1

αn(1− Lβn)
||νn − xn+1|| ≤

1

αn(1− Lb)
||νn − xn+1||. (3.16)

It now follows that

||νn − Tνn||2 ≤ tn
αn

( 1

(1− Lb)2
||νn − xn+1||2

αntn

)
. (3.17)

Furthermore

||xn − xn+1|| ≤ ||xn − νn||+ ||νn − xn+1||
≤ tn||xn||+ αn||νn − Tyn||
≤ tn||xn||+ ||νn − Tνn||+ L||νn − Tνn||
= tn||xn||+ (1 + L)||νn − Tνn||. (3.18)

Since lim
n→∞

tn = lim
n→∞

tn
αn

= 0, and since
||νnk

−xnk+1||2

αnk
tnk

is bounded, it now follows

from (3.17) and (3.18) that

lim
k→∞

||Tνnk
− νnk

||2 = 0, and lim
k→∞

||xnk
− xnk+1||2 = 0.

Since (I−T ) is demiclosed at 0, it follows that any weak cluster point of {νnk
}∞k=1

is in F (T ). Furthermore, {νnk
}∞k=1 and {xnk

}∞k=1 have the same set of weak
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cluster points. Since F (T ) is closed and convex, then setting p = PF (T )(0) in
Lemma 2.1 and using (3.15) we obtain

lim inf
n→∞

Zn ≥ 2 lim inf
k→∞

⟨xnk
− p, p⟩ = 2 lim inf

k→∞
⟨xnk

− PF (T )(0), PF (T )(0)⟩ ≥ 0.

(3.19)
From (3.19) and (3.14) we now obtain

lim sup
n→∞

||xn − p||2 = lim sup
n→∞

||xn − PF (T )(0)||2 = 0. �

Corollary 3.1 Let H be a real Hilbert space and let T : H → H be an L-
Lipschitzian pseudocontractive map with a nonempty fixed point set F (T ). Let
{tn}∞n=1, {αn}∞n=1 and {βn} be sequences in (0, 1) satisfying the conditions
(c1) lim

n→∞
tn = 0;

(c2)
∑∞

n=1 tn = ∞;
(c3) αn ≤ βn, n ≥ 1; and 0 < ϵ ≤ βn ≤ b < 1 for some ϵ > 0 and for some

b ∈
(
0, 1√

1+L2+1

)
;

(c4) lim
n→∞

tn
αn

= 0.

Then the modified Ishikawa iteration sequence {xn}∞n=1 generated from an x1 ∈
H by (3.1) converges strongly to PF (T )(0) the least norm element of F (T ).

Corollary 3.2 Let H be a real Hilbert space and let T : H → H be a k-strictly
pseudocontractive map with a nonempty fixed point set F (T ). Let {tn}∞n=1, {αn}∞n=1

and {βn} be sequences in (0, 1) satisfying the conditions
(c1) lim

n→∞
tn = 0;

(c2)
∑∞

n=1 tn = ∞;
(c3) αn ≤ βn, n ≥ 1; and 0 < ϵ ≤ βn ≤ b < 1 for some ϵ > 0 and for some

b ∈
(
0, 1√

1+L2+1

)
, where L := 1+

√
k

1−
√
k
;

(c4) lim
n→∞

tn
αn

= 0.

Then the modified Ishikawa iteration sequence {xn}∞n=1 generated from an x1 ∈
H by (3.1) converges strongly to PF (T )(0) the least norm element of F (T ).

Corollary 3.3 Let H be a real Hilbert space and let T : H → H be an L-
Lipschitzian k-demicontractive map such that (I − T ) is demiclosed at 0. Let
{tn}∞n=1, {αn}∞n=1 and {βn} be sequences in (0, 1) satisfying the conditions
(c1) lim

n→∞
tn = 0;

(c2)
∑∞

n=1 tn = ∞;
(c3) αn ≤ βn, n ≥ 1; and 0 < ϵ ≤ βn ≤ b < 1 for some ϵ > 0 and for some

b ∈
(
0, 1√

1+L2+1

)
;

(c4) lim
n→∞

tn
αn

= 0.

Then the modified Ishikawa iteration sequence {xn}∞n=1 generated from an x1 ∈
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H by (3.1) converges strongly to PF (T )(0) the least norm element of F (T ).

Remark 3.1 Our Theorem and Corollaries remain true if H is replaced with
a nonempty closed convex subset K of H with 0 ∈ K. Furthermore, for ar-
bitrary nonempty closed convex subset K of H, our iteration scheme could be
appropriately modified with the projection PK : H → K to achieve our results.
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