DOI QR코드

DOI QR Code

Surface Modification of Colloidal Silica Nanoparticles: Controlling the size and Grafting Process

  • He, Wentao (National Engineering Research Center for Compounding and Modification of Polymeric Materials, and Institute of Mining Technology, GuiZhou University) ;
  • Wu, Danhua (National Engineering Research Center for Compounding and Modification of Polymeric Materials, and Institute of Mining Technology, GuiZhou University) ;
  • Li, Juan (National Engineering Research Center for Compounding and Modification of Polymeric Materials, and Institute of Mining Technology, GuiZhou University) ;
  • Zhang, Kai (National Engineering Research Center for Compounding and Modification of Polymeric Materials, and Institute of Mining Technology, GuiZhou University) ;
  • Xiang, Yushu (National Engineering Research Center for Compounding and Modification of Polymeric Materials, and Institute of Mining Technology, GuiZhou University) ;
  • Long, Lijuan (National Engineering Research Center for Compounding and Modification of Polymeric Materials, and Institute of Mining Technology, GuiZhou University) ;
  • Qin, Shuhao (National Engineering Research Center for Compounding and Modification of Polymeric Materials, and Institute of Mining Technology, GuiZhou University) ;
  • Yu, Jie (National Engineering Research Center for Compounding and Modification of Polymeric Materials, and Institute of Mining Technology, GuiZhou University) ;
  • Zhang, Qin (National Engineering Research Center for Compounding and Modification of Polymeric Materials, and Institute of Mining Technology, GuiZhou University)
  • Received : 2013.05.10
  • Accepted : 2013.06.25
  • Published : 2013.09.20

Abstract

Surface modification of colloidal silica nanoparticles without disrupting the electric double layer of nanoparticles is a major challenge. In the work, silane was employed to modify colloidal silica nanoparticles without inducing bridge flocculation obviously. The effect of pH value of the silica sol, the amount of silane in feed, and reaction temperature on the graft amount and the final size of modified particles was investigated. The increased weight loss by TG and the appearance of $T_2$ and $T_3$ except for $Q_2$ and $Q_3$ signals by CP/MAS $^{29}Si$ NMR of the modified samples verified the successful grafting of silane. The graft amount reached 0.57 mmol/g, which was slightly lower than theory value, and the particle size remained nearly the same as unmodified particles for acidic silica sol at the optimum condition. For alkaline silica sol after modification, aggregates composed of several nanoparticles connected together with silane moleculars as the bridge appeared.

Keywords

References

  1. Chan, C. M.; Wu, J. S.; Li, J. X.; Cheung, Y. K. Polym. 2006, 43, 2981.
  2. Wu, C. L.; Zhang, M. Q., Rong, M. Z., Friedrich, K. Compos. Sci. Technol. 2005, 65, 635. https://doi.org/10.1016/j.compscitech.2004.09.004
  3. Dougnac, V. N.; Alamillo, R.; Peoples, B. C.; Quijada, R. Polym. 2010, 51, 2918. https://doi.org/10.1016/j.polymer.2010.02.014
  4. Basavaraja, C.; Kim, N. R.; Jo, E. A.; Revanasiddappa, M.; Huh, D. S. Bull. Korean Chem. Soc. 2010, 31, 298. https://doi.org/10.5012/bkcs.2010.31.02.298
  5. Nitta, K.; Asuka, K.; Liu, B.; Terano, M. Polym. 2006, 47, 6457. https://doi.org/10.1016/j.polymer.2006.06.054
  6. Yuvaraj, H.; Shimb, J. J.; Lim, K. T. Polym. Adv. Technol. 2010, 21, 424.
  7. Liu, Y. L.; Hsu, C. Y.; Wang, M. L.; Chen, H. S. Nanotechnol. 2003, 14, 813. https://doi.org/10.1088/0957-4484/14/7/321
  8. Radu, D. R.; Lai, C. Y.; Jeftinija, K.; Rowe, E. W.; Jeftinija, S.; Lin, V. S. Y. J. Am. Chem. Soc. 2004, 126, 13216. https://doi.org/10.1021/ja046275m
  9. Mahltig, B.; Bottcher, H. J. Sol-Gel Sci. Technol. 2003, 27, 43. https://doi.org/10.1023/A:1022627926243
  10. Schmid, A.; Tonnar, J.; Armes, S. P. Adv. Mater. 2008, 20, 3331. https://doi.org/10.1002/adma.200800506
  11. Han, M. G.; Armes, S. P. J. Colloid Interf. Sci. 2003, 262, 418. https://doi.org/10.1016/S0021-9797(03)00121-8
  12. Wu, L. B.; Cao, D.; Huang, Y.; Li, B. G. Polym. 2008, 49, 742. https://doi.org/10.1016/j.polymer.2007.12.019
  13. Percy, M. J.; Barthet, C.; Lobb, J. C.; Khan, M. A.; Lascelles, S. F.; Vamvakaki, M.; Armes, S. P. Langmuir 2000, 16, 6913. https://doi.org/10.1021/la0004294
  14. Kar, M.; Vijayakumar, P. S.; Prasad, B. L. V.; Gupta, S. S. Langmuir 2010, 26, 5772. https://doi.org/10.1021/la903595x
  15. Posthumus, W.; Magusin, P. C. M. M.; Brokken-Zijp, J. C. M.; Tinnemans, A. H. A.; van der Linde, R. J. Colloid Interf. Sci. 2004, 269, 109. https://doi.org/10.1016/j.jcis.2003.07.008
  16. Chen, X. Y.; Armes, S. P. Adv. Mater. 2003, 15, 1558. https://doi.org/10.1002/adma.200305067
  17. Arkan, E. Master of Science Thesis, Chalmers University of Technology, Sweden. 2011. http://publications.lib.chalmers.se/records/fulltext/139570.pdf
  18. Osterholtz, F. D.; Pohl, E. R. In Silanes and Other Coupling Agents; Mittal, K. L., Ed.; VSP BV, 1992; p 119.
  19. Gorl, U.; Hunsche, A. Nippon Gomu Kyokaishi 1998, 71, 549. https://doi.org/10.2324/gomu.71.549
  20. He, H. P.; Duchet, J.; Galy, J. J. Colloid Interf. Sci. 2005, 288, 171. https://doi.org/10.1016/j.jcis.2005.02.092
  21. Park, K. W.; Kwon, O. Y. Bull. Korean Chem. Soc. 2004, 25, 965. https://doi.org/10.5012/bkcs.2004.25.7.965
  22. Miller, J. D.; Ishida, H. Surf. Sci. 1984, 148, 601. https://doi.org/10.1016/0039-6028(84)90600-9
  23. Abboud, M.; Turner, M.; Duguet, E.; Fontanille, M. J. Mater. Chem. 1997, 7, 1527. https://doi.org/10.1039/a700573c
  24. Nishiyama, N.; Shick, R.; Ishida, H. J. Colloid Interf. Sci. 1991, 143, 146. https://doi.org/10.1016/0021-9797(91)90447-G

Cited by

  1. Synthesis of Water-Based Dispersions of Polymer/TiO2 Hybrid Nanospheres vol.5, pp.3, 2015, https://doi.org/10.3390/nano5031454
  2. -functionalized silica vol.28, pp.10, 2016, https://doi.org/10.1177/0954008315623352
  3. Isothermal crystallization of polypropylene/surface modified silica nanocomposites vol.59, pp.10, 2016, https://doi.org/10.1007/s11426-016-0146-0
  4. Tuning the interlaminar shear strength and thermo-mechanical properties of glass fiber composites by incorporation of (3-mercaptopropyl) trimethoxysilane-functionalized carbon black vol.26, pp.12, 2017, https://doi.org/10.1007/s13726-017-0576-3
  5. In situ synthesis of ABS containing hydrophobic silica nanoparticles and their effects on mechanical properties vol.81, pp.3, 2017, https://doi.org/10.1007/s10971-016-4252-4
  6. Heterogeneous Organocatalysts Based on a Triazine-Triazole Silane Ligand vol.2018, pp.38, 2018, https://doi.org/10.1002/ejic.201800885
  7. Preparation of Silica Hollow Composite Particles vol.35, pp.11, 2013, https://doi.org/10.5012/bkcs.2014.35.11.3303
  8. Crystallization Behavior and Mechanical Properties of Nanosilica-Reinforced Isotactic Polypropylene Composites vol.30, pp.5, 2013, https://doi.org/10.3139/217.3065
  9. Geometrical Constraints of Poly(diethylene glycol methyl ether methacrylate) Brushes on Spherical Nanoparticles and Cylindrical Nanowires: Implications for Thermoresponsive Brushes on Nanoobjects vol.3, pp.4, 2013, https://doi.org/10.1021/acsanm.0c00401
  10. Hydrophobic Modification on the Surface of SiO2 Nanoparticle: Wettability Control vol.36, pp.49, 2013, https://doi.org/10.1021/acs.langmuir.0c02118
  11. Preparation of poly‐d,l‐lactide based nanocomposites with polymer‐grafted silica by melt blending: Study of molecular, morphological, and mechanical pro vol.42, pp.2, 2013, https://doi.org/10.1002/pc.25878
  12. Assessment of characteristics and weather stability of acrylic coating containing surface modified zirconia nanoparticles vol.163, pp.None, 2022, https://doi.org/10.1016/j.porgcoat.2021.106675