DOI QR코드

DOI QR Code

Synthesis and Characterization of KTiNbO5 Nano-particles by Novel Polymerizable Complex Method

  • Wang, Ning-Ning (School of Chemical Engineering, Anhui University of Science and Technology) ;
  • Lan, Yun-Xiang (School of Chemical Engineering, Anhui University of Science and Technology) ;
  • He, Jie (School of Chemical Engineering, Anhui University of Science and Technology) ;
  • Dong, Rui (Chemical and Biological Engineering College, Yancheng Institute of Technology) ;
  • Hu, Jin-Song (School of Chemical Engineering, Anhui University of Science and Technology)
  • Received : 2013.05.03
  • Accepted : 2013.06.25
  • Published : 2013.09.20

Abstract

The layered $KTiNbO_5$ was successfully synthesized with titanium(IV) isopropoxide and niobium oxalate by a novel polymerized complex (PC) method. The morphology and structure of the as-prepared sample was characterized by means of High-Resolution Transmission Electron Microscope, powder X-ray diffraction, and Laser Raman Spectroscopy. The spectral response characteristic was recorded by using UV-vis Diffuse Reflectance Spectroscopy. Results show that $KTiNbO_5$ as-prepared by PC method presents an uniform morphology of nano-particles, the mean particle sizes is ca. 28 nm corresponding to the (002), and the crystal structure can be well indexed to the orthorhombic phase. The sample as-prepared by PC method has higher band gap energy than that of the sample prepared by a solid-state reaction method due to the quantum size effect.

Keywords

References

  1. Inoue, K.; Suzuki, S.; Nagai, M. J. Electroceram. 2010, 24, 110. https://doi.org/10.1007/s10832-008-9558-3
  2. Cai, W. M.; Lu, G. H.; He, J.; Lan, Y. X. Ceram. Int. 2012, 38, 3167. https://doi.org/10.1016/j.ceramint.2011.12.020
  3. Chausson, S.; Caignaert, V.; Retoux, R.; Rueff, J. M.; Pluart, L. L.; Madec, P. J.; Jaffres, P. A. Polymer 2008, 49, 488. https://doi.org/10.1016/j.polymer.2007.11.050
  4. Zhang, X. B.; Liu, C.; Liu, L.; Zhang, D. G.; Zhang, T. L.; Xu, X. Y.; Tong, Z. W. J. Mater. Sci. 2010, 45, 1604. https://doi.org/10.1007/s10853-009-4134-z
  5. Xie, G. Q.; Xi, P. X.; Liu, H. Y.; Chen, F. J.; Huang, L.; Shi, Y. J.; Hou, F. P.; Zeng, Z. Z.; Shao, C. W.; Wang, J. J. Mater. Chem. 2012, 22, 1033. https://doi.org/10.1039/c1jm13433g
  6. Kudo, A.; Kaneko, E. Micropor. Mesopor. Mat. 1998, 21, 615. https://doi.org/10.1016/S1387-1811(98)00037-7
  7. Sakthivel, M.; Weppner, W. Sensor. Actuat. B-Chem. 2007, 125, 435. https://doi.org/10.1016/j.snb.2007.02.054
  8. Hosogi, Y.; Kato, H.; Kudo, A. J. Phys. Chem. C 2008, 112, 17678. https://doi.org/10.1021/jp805693j
  9. Jang, J. S.; Kim, H. G.; Reddy, V. R.; Bae, S. W.; Ji, S. M.; Lee, J. S. J. Catal. 2005, 231, 213. https://doi.org/10.1016/j.jcat.2005.01.026
  10. He, J.; Li, Q. J.; Tang, Y.; Yang, P.; Li, A.; Li, R.; Li, H. Z. Appl. Catal. A: Gen. 2012, 443-444, 145. https://doi.org/10.1016/j.apcata.2012.07.036
  11. Bruzaud, S.; Levesque, L. Chem. Mater. 2002, 14, 2421. https://doi.org/10.1021/cm021108b
  12. Takahashi, H.; Kakihana, M.; Yamashita, Y.; Yoshida, K.; Ikeda, S.; Hara, M.; Domen, K. Phys. Chem. Chem. Phys. 2000, 2, 4461. https://doi.org/10.1039/b003808n
  13. He, J.; Zhao, J. B.; Lan, Y. X. J. Fuel Chem. Tech. 2009, 37, 485. https://doi.org/10.1016/S1872-5813(10)60004-7
  14. Takahashi, H.; Kakihan, M.; Yamashit, Y.; Yoshid, K.; Ikeda, S.; Hara, M.; Domen, K. J. Alloys Compd. 1999, 285, 77. https://doi.org/10.1016/S0925-8388(98)00968-2
  15. Langford, J. I.; Wilson, A. J. C. J. Appl. Cryst. 1978, 11, 102. https://doi.org/10.1107/S0021889878012844
  16. Yang, G.; Kong, Y.; Hou, W. H.; Yan, Q. J. J. Phys. Chem. B 2005, 109, 1371. https://doi.org/10.1021/jp0470905
  17. Su, Y.; Balmer, M. L.; Bunker, B. C. J. Phys. Chem. B 2000, 104, 8160.
  18. Zhu, H. Y.; Zheng, Z. F.; Gao, X. P.; Huang, Y. N.; Yan, Z. M.; Zou, J.; Yin, H. M.; Zou, Q. D.; Kable, S. H.; Zhao, J. C.; Xi, Y. F.; Martens, W. N.; Frost, R. L. J. Am. Chem. Soc. 2006, 128, 2373. https://doi.org/10.1021/ja056301w
  19. Droz, C.; Vallat-Sauvain, E.; Bailat, J.; Feitknecht, L.; Meier, J.; Shah, A. Sol. Energ. Mat. Sol. C 2004, 81, 61 https://doi.org/10.1016/j.solmat.2003.07.004
  20. Bulanek, R.; apek, L.; Setni ka, M.; i manec, P. J. Phys. Chem. C 2011, 115, 12430. https://doi.org/10.1021/jp112206c
  21. Maedaa, K.; Mallouk, T. E. J. Mater. Chem. 2009, 19, 4813. https://doi.org/10.1039/b903692j

Cited by

  1. Structure and photocatalytic performance of K1−3x M x TiNbO5 (M = Fe, Ce) for ethyl mercaptan vol.87, pp.10, 2014, https://doi.org/10.1134/S1070427214100139
  2. Probing the pseudo-1-D ion diffusion in lithium titanium niobate anode for Li-ion battery vol.18, pp.32, 2016, https://doi.org/10.1039/C6CP04488C
  3. Structural characteristics and spectral response of composite transition metal oxide photocatalytic materials vol.51, pp.15, 2016, https://doi.org/10.1007/s10853-016-0005-6
  4. Nanosheet Aggregation vol.12, pp.01, 2017, https://doi.org/10.1142/S1793292017500035
  5. Alloying in an Intercalation Host: Metal Titanium Niobates as Anodes for Rechargeable Alkali-Ion Batteries vol.13, pp.3, 2018, https://doi.org/10.1002/asia.201701602
  6. Effects of urea amounts and nitrogenation reaction temperature on optical absorption performances of N-doped KTiNbO5 vol.125, pp.5, 2013, https://doi.org/10.1007/s00339-019-2605-x