DOI QR코드

DOI QR Code

Immobilization of Lipase using Alginate Hydrogel Beads and Enzymatic Evaluation in Hydrolysis of p-Nitrophenol Butyrate

  • Zhang, Shuang (Department of Chemistry, Renmin University of China) ;
  • Shang, Wenting (Department of Chemistry, Renmin University of China) ;
  • Yang, Xiaoxi (Department of Chemistry, Renmin University of China) ;
  • Zhang, Shujuan (Department of Chemistry, Renmin University of China) ;
  • Zhang, Xiaogang (Department of Chemistry, Renmin University of China) ;
  • Chen, Jiawei (State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences)
  • Received : 2013.04.01
  • Accepted : 2013.06.25
  • Published : 2013.09.20

Abstract

The immobilization of enzyme is one of the key issues both in the field of enzymatic research and industrialization. In this work, we reported a facile method to immobilize Candida Antarctica lipase B (CALB) in alginate carrier. In the presence of calcium cation, the enzyme-alginate suspension could be cross-linked to form beads with porous structure at room temperature, and the enzyme CALB was dispersed in the beads. Activity of the enzyme-alginate composite was verified by enzymatic hydrolysis reaction of p-nitrophenol butyrate in aqueous phase. The effects of reaction parameters such as temperature, pH, embedding and lyophilized time on the reactive behavior were discussed. Reuse cycle experiments for the hydrolysis of p-nitrophenol butyrate demonstrated that activity of the enzyme-alginate composite was maintained without marked deactivation up to 6 repeated cycles.

Keywords

References

  1. Seema, S. B.; Steven, H. Biomaterials 2002, 23, 3627. https://doi.org/10.1016/S0142-9612(02)00095-9
  2. Brian, O. H.; Al-Bahrani, J. L.; Maria, C.; Armando, C. F. B.; Roland, W.; Helen, C. H.; Nicolas, S. J . Mol. Catal. B-enzym. 2012, 77, 1. https://doi.org/10.1016/j.molcatb.2011.12.010
  3. Melanie, B.; Jerome, B.; Annie, M.; Nicholas, P.; Pierre, M.; Mohammed, D.; Robert, C. Tetrahedron: Asymmetry 2012, 23, 428. https://doi.org/10.1016/j.tetasy.2012.04.001
  4. Krienke, H.; Kunz, W.; Xenakis, A.; Schmeer, G. Biocatalysis Using Lipase Immobilized in Organogels in Supercritical Carbon Dioxide; 2005.
  5. Tang, Y. J.; Li, Y. China Bio. 2007, 27, 110.
  6. Guzman, F.; Barberis, S.; Illanes, A. Electron. J. Biotechnol. 2007, 10, 279.
  7. Ken, D.; Johnstone, M.; Dieckelmann; Michael, P.; Jennings, J. T. Blanchfield, I. T. Understanding Biology Using Peptides American Peptide Symposia 2006, 9, 511.
  8. Taqieddin, E.; Amiji, M. Biomaterials 2004, 25, 1937. https://doi.org/10.1016/j.biomaterials.2003.08.034
  9. Carolina, P.; Maria, C.; Branesb, A. M.; Gloria, F. L.; Jose, M. G.; Rolando, C. L.; Wilson. J. Mol. Catal. B-enzym. 2012, 78, 111. https://doi.org/10.1016/j.molcatb.2012.03.012
  10. Sogani, M.; Mathur, N.; Bhatnagar, P. Int. J. Environ. Sci. Tec. 2012, 9, 119. https://doi.org/10.1007/s13762-011-0005-7
  11. Liu, N.; Wang, Y.; Zhao, Q. Z.; Cui, C.; Fu, M.; Zhao, M. Food Chemistry 2012, 134, 301. https://doi.org/10.1016/j.foodchem.2012.02.145
  12. Gemeiner, P. Enzyme Engineering: Immobilized Biosystems. Chichester, UK, Ellis Horwood, Ltd: 1992.
  13. Pencreac'h, G.; Leullier, M.; Baratti, J. C. Biotechnol Bioeng. 1997, 56, 181. https://doi.org/10.1002/(SICI)1097-0290(19971020)56:2<181::AID-BIT7>3.0.CO;2-L
  14. Gawlitza, K.; Wu, C.; Georgieva, R.; Wang, D.; Ansorge-Schumacher, M. B.; Klitzing, R. V. Phys. Chem. Chem. Phys. 2012, 14, 9594. https://doi.org/10.1039/c2cp40624a
  15. Hertzberg, S.; Kvittingen, L.; Anthonsen, T.; Skjak-Braek, G. Enzyme. Microb. Technol. 1992, 14, 42. https://doi.org/10.1016/0141-0229(92)90024-I
  16. David, T.; Arazawa, H.; Oh, S. H.; Carl, A.; Johnson, J. R.; Woolley, W. R.; Wagner, W. J.; Federspiel. J. Membrane. Sci. 2012, 25, 403.
  17. Dashevsky, A. Int. J. Pharm. 1998, 1, 161.
  18. Nenad, B.; Milosavic, R. M.; Prodanovic, M. Methods in Molecular Biology 2011; p 155.
  19. Orive, G.; De Castro, M.; Kong, H. J.; Hernandez, R. M.; Ponce, S.; Mooney, D. J. J. Control. Release. 2009, 135, 203. https://doi.org/10.1016/j.jconrel.2009.01.005
  20. Wang, N.; Adams, G.; Buttery, L.; Falcone, F. H.; Stolnik, S. J. Biotechnol. 2009, 144, 304. https://doi.org/10.1016/j.jbiotec.2009.08.008
  21. Andrea, B.; Barigelli, E.; Dentin, M. Biomacromolecules 2009, 10, 2328. https://doi.org/10.1021/bm900517q
  22. Hao, X. L.; Xia, Y. Z.; Ji, Q.; Kong, Q. S.; Sui, K. Y. Sci. Technol. Eng. 2010, 10, 2800.
  23. Chen, P.; Zhang, X. G.; Liu, Z. Z. Nanosci. Nanotech. 2008, 1, 8.
  24. Quinn, D. M.; Shirai, K.; Jackson, R. L.; Harmony, J. A. K. Biochemistry 1982, 21, 6872. https://doi.org/10.1021/bi00269a038
  25. Sivalingam, G.; Chattopadhyay, S.; Madras, G. Chem. Eng. Sci. 2003, 58, 2911. https://doi.org/10.1016/S0009-2509(03)00155-6
  26. Song, B. D.; Song, L.; Pang, C. X.; Chen, E. X.; Jiang, Y. Q. China, Chem. Eng. 2009, 37, 8.
  27. Abdulkareem, J. H.; Adhami, A.; Jolanta, B.; Beata, G. M. Process Biochem. 2002, 37, 1387. https://doi.org/10.1016/S0032-9592(02)00023-7
  28. Cai, J. M.; Wu, K.; Zhang, J. China, J. Biochem. Mol. Bio. 2002, 18, 548.
  29. Xie, H. L.; Zhu, S.; Wang, J. China. J. Environ. Sci. 2005, 26, 164.
  30. Rodrigues, D. S.; Cavalcante, G. P.; Ferreira, A. L. O.; Goncalves, L. R. B. Chem. Biochem. Eng. 2008, 22, 125.

Cited by

  1. Immobilization of Brassica oleracea Chlorophyllase 1 (BoCLH1) and Candida rugosa Lipase (CRL) in Magnetic Alginate Beads: An Enzymatic Evaluation in the Corresponding Proteins vol.19, pp.8, 2014, https://doi.org/10.3390/molecules190811800
  2. Enhanced synthesis of isoamyl acetate using liquid-gas biphasic system by the transesterification reaction of isoamyl alcohol obtained from fusel oil vol.22, pp.4, 2017, https://doi.org/10.1007/s12257-016-0616-4
  3. Enantioselective synthesis of (S)-naproxen using immobilized lipase on chitosan beads vol.29, pp.6, 2017, https://doi.org/10.1002/chir.22689
  4. Immobilization of Lipase by Ionic Liquid-Modified Mesoporous SiO2 Adsorption and Calcium Alginate-Embedding Method pp.1559-0291, 2017, https://doi.org/10.1007/s12010-017-2676-0
  5. SE3-PB isolated from lipid-rich wastewater pp.1532-2297, 2018, https://doi.org/10.1080/10826068.2018.1514517
  6. Immobilization of Amano Lipase A onto Stöber silica surface: process characterization and kinetic studies vol.13, pp.1, 2013, https://doi.org/10.1515/chem-2015-0017
  7. Microencapsulation of maltogenicα-amylase in poly(urethane-urea) shell: inverse emulsion method vol.32, pp.6, 2013, https://doi.org/10.3109/02652048.2015.1065916
  8. Application and characterization of magnetic chitosan microspheres for enhanced immobilization of cellulase vol.34, pp.6, 2013, https://doi.org/10.1080/10242422.2016.1247830
  9. Controlling the morphology and material characteristics of electrospray generated calcium alginate microhydrogels vol.33, pp.7, 2016, https://doi.org/10.1080/02652048.2016.1228707
  10. Stability studies of immobilized lipase on rice husk and eggshell membrane vol.206, pp.None, 2013, https://doi.org/10.1088/1757-899x/206/1/012032
  11. Immobilization of Cellulase from Trichoderma Reesei on Multiwall Carbon Nanotubes (MWCNTs) vol.864, pp.None, 2013, https://doi.org/10.1088/1757-899x/864/1/012171