References
- Seema, S. B.; Steven, H. Biomaterials 2002, 23, 3627. https://doi.org/10.1016/S0142-9612(02)00095-9
- Brian, O. H.; Al-Bahrani, J. L.; Maria, C.; Armando, C. F. B.; Roland, W.; Helen, C. H.; Nicolas, S. J . Mol. Catal. B-enzym. 2012, 77, 1. https://doi.org/10.1016/j.molcatb.2011.12.010
- Melanie, B.; Jerome, B.; Annie, M.; Nicholas, P.; Pierre, M.; Mohammed, D.; Robert, C. Tetrahedron: Asymmetry 2012, 23, 428. https://doi.org/10.1016/j.tetasy.2012.04.001
- Krienke, H.; Kunz, W.; Xenakis, A.; Schmeer, G. Biocatalysis Using Lipase Immobilized in Organogels in Supercritical Carbon Dioxide; 2005.
- Tang, Y. J.; Li, Y. China Bio. 2007, 27, 110.
- Guzman, F.; Barberis, S.; Illanes, A. Electron. J. Biotechnol. 2007, 10, 279.
- Ken, D.; Johnstone, M.; Dieckelmann; Michael, P.; Jennings, J. T. Blanchfield, I. T. Understanding Biology Using Peptides American Peptide Symposia 2006, 9, 511.
- Taqieddin, E.; Amiji, M. Biomaterials 2004, 25, 1937. https://doi.org/10.1016/j.biomaterials.2003.08.034
- Carolina, P.; Maria, C.; Branesb, A. M.; Gloria, F. L.; Jose, M. G.; Rolando, C. L.; Wilson. J. Mol. Catal. B-enzym. 2012, 78, 111. https://doi.org/10.1016/j.molcatb.2012.03.012
- Sogani, M.; Mathur, N.; Bhatnagar, P. Int. J. Environ. Sci. Tec. 2012, 9, 119. https://doi.org/10.1007/s13762-011-0005-7
- Liu, N.; Wang, Y.; Zhao, Q. Z.; Cui, C.; Fu, M.; Zhao, M. Food Chemistry 2012, 134, 301. https://doi.org/10.1016/j.foodchem.2012.02.145
- Gemeiner, P. Enzyme Engineering: Immobilized Biosystems. Chichester, UK, Ellis Horwood, Ltd: 1992.
- Pencreac'h, G.; Leullier, M.; Baratti, J. C. Biotechnol Bioeng. 1997, 56, 181. https://doi.org/10.1002/(SICI)1097-0290(19971020)56:2<181::AID-BIT7>3.0.CO;2-L
- Gawlitza, K.; Wu, C.; Georgieva, R.; Wang, D.; Ansorge-Schumacher, M. B.; Klitzing, R. V. Phys. Chem. Chem. Phys. 2012, 14, 9594. https://doi.org/10.1039/c2cp40624a
- Hertzberg, S.; Kvittingen, L.; Anthonsen, T.; Skjak-Braek, G. Enzyme. Microb. Technol. 1992, 14, 42. https://doi.org/10.1016/0141-0229(92)90024-I
- David, T.; Arazawa, H.; Oh, S. H.; Carl, A.; Johnson, J. R.; Woolley, W. R.; Wagner, W. J.; Federspiel. J. Membrane. Sci. 2012, 25, 403.
- Dashevsky, A. Int. J. Pharm. 1998, 1, 161.
- Nenad, B.; Milosavic, R. M.; Prodanovic, M. Methods in Molecular Biology 2011; p 155.
- Orive, G.; De Castro, M.; Kong, H. J.; Hernandez, R. M.; Ponce, S.; Mooney, D. J. J. Control. Release. 2009, 135, 203. https://doi.org/10.1016/j.jconrel.2009.01.005
- Wang, N.; Adams, G.; Buttery, L.; Falcone, F. H.; Stolnik, S. J. Biotechnol. 2009, 144, 304. https://doi.org/10.1016/j.jbiotec.2009.08.008
- Andrea, B.; Barigelli, E.; Dentin, M. Biomacromolecules 2009, 10, 2328. https://doi.org/10.1021/bm900517q
- Hao, X. L.; Xia, Y. Z.; Ji, Q.; Kong, Q. S.; Sui, K. Y. Sci. Technol. Eng. 2010, 10, 2800.
- Chen, P.; Zhang, X. G.; Liu, Z. Z. Nanosci. Nanotech. 2008, 1, 8.
- Quinn, D. M.; Shirai, K.; Jackson, R. L.; Harmony, J. A. K. Biochemistry 1982, 21, 6872. https://doi.org/10.1021/bi00269a038
- Sivalingam, G.; Chattopadhyay, S.; Madras, G. Chem. Eng. Sci. 2003, 58, 2911. https://doi.org/10.1016/S0009-2509(03)00155-6
- Song, B. D.; Song, L.; Pang, C. X.; Chen, E. X.; Jiang, Y. Q. China, Chem. Eng. 2009, 37, 8.
- Abdulkareem, J. H.; Adhami, A.; Jolanta, B.; Beata, G. M. Process Biochem. 2002, 37, 1387. https://doi.org/10.1016/S0032-9592(02)00023-7
- Cai, J. M.; Wu, K.; Zhang, J. China, J. Biochem. Mol. Bio. 2002, 18, 548.
- Xie, H. L.; Zhu, S.; Wang, J. China. J. Environ. Sci. 2005, 26, 164.
- Rodrigues, D. S.; Cavalcante, G. P.; Ferreira, A. L. O.; Goncalves, L. R. B. Chem. Biochem. Eng. 2008, 22, 125.
Cited by
- Immobilization of Brassica oleracea Chlorophyllase 1 (BoCLH1) and Candida rugosa Lipase (CRL) in Magnetic Alginate Beads: An Enzymatic Evaluation in the Corresponding Proteins vol.19, pp.8, 2014, https://doi.org/10.3390/molecules190811800
- Enhanced synthesis of isoamyl acetate using liquid-gas biphasic system by the transesterification reaction of isoamyl alcohol obtained from fusel oil vol.22, pp.4, 2017, https://doi.org/10.1007/s12257-016-0616-4
- Enantioselective synthesis of (S)-naproxen using immobilized lipase on chitosan beads vol.29, pp.6, 2017, https://doi.org/10.1002/chir.22689
- Immobilization of Lipase by Ionic Liquid-Modified Mesoporous SiO2 Adsorption and Calcium Alginate-Embedding Method pp.1559-0291, 2017, https://doi.org/10.1007/s12010-017-2676-0
- SE3-PB isolated from lipid-rich wastewater pp.1532-2297, 2018, https://doi.org/10.1080/10826068.2018.1514517
- Immobilization of Amano Lipase A onto Stöber silica surface: process characterization and kinetic studies vol.13, pp.1, 2013, https://doi.org/10.1515/chem-2015-0017
- Microencapsulation of maltogenicα-amylase in poly(urethane-urea) shell: inverse emulsion method vol.32, pp.6, 2013, https://doi.org/10.3109/02652048.2015.1065916
- Application and characterization of magnetic chitosan microspheres for enhanced immobilization of cellulase vol.34, pp.6, 2013, https://doi.org/10.1080/10242422.2016.1247830
- Controlling the morphology and material characteristics of electrospray generated calcium alginate microhydrogels vol.33, pp.7, 2016, https://doi.org/10.1080/02652048.2016.1228707
- Stability studies of immobilized lipase on rice husk and eggshell membrane vol.206, pp.None, 2013, https://doi.org/10.1088/1757-899x/206/1/012032
- Immobilization of Cellulase from Trichoderma Reesei on Multiwall Carbon Nanotubes (MWCNTs) vol.864, pp.None, 2013, https://doi.org/10.1088/1757-899x/864/1/012171