DOI QR코드

DOI QR Code

Single C-Reactive Protein Molecule Detection on a Gold-Nanopatterned Chip Based on Total Internal Reflection Fluorescence

  • Heo, Yunmi (Department of Applied Chemistry, College of Applied Science, Kyung Hee University) ;
  • Lee, Seungah (Department of Applied Chemistry, College of Applied Science, Kyung Hee University) ;
  • Lee, Sang-Won (Department of Plant Molecular Systems, Biotechnology & Crop Biotech Institute, Kyung Hee University) ;
  • Kang, Seong Ho (Department of Applied Chemistry, College of Applied Science, Kyung Hee University)
  • Received : 2013.05.18
  • Accepted : 2013.06.22
  • Published : 2013.09.20

Abstract

Single C-reactive protein (CRP) molecules, which are non-specific acute phase markers and products of the innate immune system, were quantitatively detected on a gold-nanopatterned biochip using evanescent field-enhanced fluorescence imaging. The $4{\times}5$ gold-nanopatterned biochip (spot diameter of 500 nm) was fabricated by electron beam nanolithography. Unlabeled CRP molecules in human serum were identified with single-molecule sandwich immunoassay by detecting secondary fluorescence generated by total internal reflection fluorescence (TIRF) microscopy. With decreased standard CRP concentrations, relative fluorescence intensities reduced in the range of 33.3 zM-800 pM. To enhance fluorescence intensities in TIRF images, the distance between biochip surface and CRP molecules was optimally adjusted by considering the quenching effect of gold and the evanescent field intensity. As a result, TIRF only detected one single-CRP molecule on the biochip the first time.

Keywords

References

  1. Thompson, D.; Pepys, M. B. Structure Fold Des. 1999, 7, 169. https://doi.org/10.1016/S0969-2126(99)80023-9
  2. Albrecht, C.; Kaeppel, N.; Gauglitz, G. Anal. Bioanal. Chem. 2008, 391, 1845. https://doi.org/10.1007/s00216-008-2093-x
  3. Pepys, M. B.; Hirschfield, G. M. J. Clin. Invest. 2003, 111, 1805. https://doi.org/10.1172/JCI200318921
  4. Casamassima, A.; Picciariello, M.; Quaranta, M.; Berardino, R.; Ranieri, C.; Paradiso, A.; Lorusso, V.; Guida, M. J. Urol. 2005, 173, 52. https://doi.org/10.1097/01.ju.0000146713.50673.e5
  5. George, S.; Bukowski, R. M. Cancer 2008, 113, 450. https://doi.org/10.1002/cncr.23566
  6. Pepys, M. B.; Baltz, M. L. Adv. Immunol. 1983, 34, 141. https://doi.org/10.1016/S0065-2776(08)60379-X
  7. Pfutzner, A.; Forst, T. Diabetes Technol. Ther. 2006, 8, 28. https://doi.org/10.1089/dia.2006.8.28
  8. Rifai, N.; Ridker, P. M. Curr. Opin. Lipidol. 2002, 13, 383. https://doi.org/10.1097/00041433-200208000-00005
  9. Lequin, R. M. Clin. Chem. 2005, 51, 2415. https://doi.org/10.1373/clinchem.2005.051532
  10. Price, P. C. Clin. Chem. Lab. Med. 1998, 36, 341.
  11. Grutzmeier, S.; Schenck, H. V. Clin. Chem. 1989, 35, 3461.
  12. Hutchinson, W. L.; Koenig, W.; Frohlich, M.; Sund, M.; Lewe, G. D. O.; Pepys, M. B. Clin. Chem. 2000, 46, 934.
  13. Oh, S. W.; Moon, J. D.; Park, S. Y.; Jang, H. J.; Kim, J. H.; Nahm, K. B.; Choi, E. Y. Clin. Chem. Acta 2005, 356, 172. https://doi.org/10.1016/j.cccn.2005.01.026
  14. Parra, M. D.; Tecles, F.; Suibiela, S. M.; Ceron, J. J. J. Veterinary Diagnostic Investigation 2005, 17, 139. https://doi.org/10.1177/104063870501700207
  15. Zhou, F.; Lu, M.; Wang, W.; Bian, Z. P.; Zhang, J. R.; Zhu, J. J. Clin. Chem. 2010, 56, 1701. https://doi.org/10.1373/clinchem.2010.147256
  16. Kleme, T. A.; Makinen, P.; Ylinen, T.; Vare, L.; Kulmala, S.; Ihalainen, P.; Peltonen, J. Anal. Chem. 2006, 78, 82. https://doi.org/10.1021/ac051157i
  17. Chen, X.; Wang, Y.; Zhou, J.; Yan, W.; Li, X.; Zhu, J. J. Anal. Chem. 2008, 80, 2133. https://doi.org/10.1021/ac7021376
  18. Tsai, H. Y.; Hsu, C. F.; Chiu, I. W.; Borfuh, C. Anal. Chem. 2007, 79, 8416. https://doi.org/10.1021/ac071262n
  19. Jung, S. H.; Jung, J. W.; Suh, I. B.; Yuk, J. S.; Kim, W. J.; Choi, E. Y.; Kim, Y. M.; Ha, K. S. Anal. Chem. 2007, 79, 5703. https://doi.org/10.1021/ac070433l
  20. Zhou, G.; Mao, X.; Juncker, D. Anal. Chem. 2012, 84, 7736. https://doi.org/10.1021/ac301082d
  21. Swanson, C.; D'Andrea, A. Clin. Chem. 2013, 59, 641. https://doi.org/10.1373/clinchem.2012.200360
  22. Dykstra, P. H.; Roy, V.; Byrd, C.; Bentley, W. E.; Ghodssi, R. Anal. Chem. 2011, 83, 5920. https://doi.org/10.1021/ac200835s
  23. Du, W.; Xu, Z.; Ma, X.; Song, L.; Schneider, E. M. J. Biotechnol. 2003, 106, 87. https://doi.org/10.1016/j.jbiotec.2003.08.001
  24. Andresen, H.; Grotzinger, C.; Zarse, K.; Birringer, M.; Hessenius, C.; Kreuzer, O. J.; Ehrentreich-Forster, E.; Bier, F. F. Sens. Actuators B: Chem. 2006, 113, 655. https://doi.org/10.1016/j.snb.2005.07.033
  25. Henry, J.; Anand, A.; Chowdhury, M.; Cotei, G.; Moreira, R.; Good, T. Anal. Biochem. 2004, 334, 1. https://doi.org/10.1016/j.ab.2004.07.008
  26. Wang, S.; Zhang, C.; Wang, J.; Zhang, Y. Anal. Chim. Acta 2005, 546, 161. https://doi.org/10.1016/j.aca.2005.04.088
  27. Russo, G.; Zegar, C.; Giordan, A. Oncogene 2003, 23, 6497.
  28. Lee, K. B.; Park, S. J.; Mirkin, C. A.; Smith, J. C.; Mrksich, M. Science 2002, 295, 1702. https://doi.org/10.1126/science.1067172
  29. Martin, B. D.; Gaber, B. P.; Patterson, C. H.; Turner, D. C. Langmuir 1998, 14, 3971. https://doi.org/10.1021/la9713311
  30. Morozov, V. N.; Morozova, T. Y. Anal. Chem. 1999, 71, 1415. https://doi.org/10.1021/ac9808775
  31. Hou, S. Y.; Chen, H. K.; Cheng, H. C.; Huang, C. Y. Anal. Chem. 2007, 79, 980. https://doi.org/10.1021/ac061507g
  32. Shen, Y.; Tolic, N.; Masselon, C.; Pasa-Tolic, L.; Camp, D. G.; Lipton, M. S.; Anderson, G. A.; Smith, R. D. Anal. Bioanal. Chem. 2004, 387, 1037.
  33. Lee, S.; Lee, S.; Ko, Y. H.; Jung, H.; Kim, J. D.; Song, J. M.; Choo, J.; Eo, S. K.; Kang, S. H. Talanta 2009, 78, 608. https://doi.org/10.1016/j.talanta.2008.12.018
  34. Islam, S.; Lee, H. G.; Choo, J.; Song, J. M.; Kang, S. H. Talanta 2010, 81, 1402. https://doi.org/10.1016/j.talanta.2010.02.042
  35. Lee, K.; Lee, S.; Yu, H.; Kang, S. H J. Nanosci. Nanotechnol. 2010, 10, 3228. https://doi.org/10.1166/jnn.2010.2251
  36. Lee, S.; Choi, J. S.; Kang, S. H. J. Nanosci. Nanotechnol. 2007, 7, 3689.
  37. Kang, S. H.; Kim, Y. J.; Yeung, E. S. Anal. Bioanal. Chem. 2007, 387, 2663. https://doi.org/10.1007/s00216-007-1134-1
  38. Bjork, I. Eur. J. Biochem. 1972, 29, 579. https://doi.org/10.1111/j.1432-1033.1972.tb02024.x
  39. Lee, J. M.; Park, H. K.; Jung, Y.; Kim, J. K.; Jung, S. O.; Chung, B. H. Anal. Chem. 2007, 79, 2680. https://doi.org/10.1021/ac0619231
  40. Lynch, M.; Mosher, C.; Huff, J.; Nettikadan, S.; Johnson, J.; Henderson, E. Proteomics 2004, 4 ,1695. https://doi.org/10.1002/pmic.200300701
  41. Anderson, A. S.; Dattelbaum, A. M.; Montano, G. A.; Price, D. N.; Schmidt, J. G.; Martinez, J. S.; Grace, W. K.; Grace, K. M.; Swanson, B. I. Langmuir 2008, 24, 2240. https://doi.org/10.1021/la7033438
  42. Stefani, F.; Gerbeth, G. Phys. Rev. Lett. 2005, 94, 023005/1-023005/4.
  43. Lakowicz, J. R.; Malicka, J.; D'Auria, S.; Gryczynski, I. Anal. Biochem. 2003, 320, 13.