DOI QR코드

DOI QR Code

Natural Amino Acid Based Phenolic Derivatives for Synthesizing Silver Nanoparticles with Tunable Morphology and Antibacterial Studies

  • Kumar, V. Vinod (School of Chemical & Biotechnology, SASTRA University) ;
  • Nithya, S. (School of Chemical & Biotechnology, SASTRA University) ;
  • Shyam, Aswin (School of Chemical & Biotechnology, SASTRA University) ;
  • Subramanian, N. Sai (School of Chemical & Biotechnology, SASTRA University) ;
  • Anthuvan, J. Tennis (Department of Chemistry, M. Kumarasamy College of Engineering) ;
  • Anthony, Savarimuthu Philip (School of Chemical & Biotechnology, SASTRA University)
  • Received : 2013.04.22
  • Accepted : 2013.06.19
  • Published : 2013.09.20

Abstract

Silver nanoparticles (AgNPs) with spherical and prism morphologies were formed at room temperature depend on the amino acid attached with phenolic unit. Absorption studies showed 410-420 nm surface plasmon resonance absorption for spherical nanoparticles whereas prism morphology showed three absorption peaks (382, 452 and 523 nm). The formation of spherical and prism morphology was confirmed by scanning and high resolution transmission electron microscopy. Antibacterial studies of both the morphologies did not show any significant differences in the inhibition of bacterial growth.

Keywords

References

  1. Li, L.; Hu, J.; Alivistos, A. P. Nano Lett. 2001, 1, 349. https://doi.org/10.1021/nl015559r
  2. Rao, C. N. R.; Cheetham, A. K. J. Mater. Chem. 2001, 11, 2887. https://doi.org/10.1039/b105058n
  3. Prashant, K. J.; Huang, X.; El-Sayed, I. H.; El-Sayed, M. A. Acc. Chem. Res. 2008, 41, 1578. https://doi.org/10.1021/ar7002804
  4. Dahl, J. A.; Maddux, B. L. S.; Hutchison, J. E. Chem. Rev. 2007, 107, 2228. https://doi.org/10.1021/cr050943k
  5. Hutchison, J. E. ACS Nano 2008, 2, 395. https://doi.org/10.1021/nn800131j
  6. Haes, A. J.; Haynes, C. L.; McFarland, A. D.; Schatz, G. C.; Van Duyne, R. P.; Zou, S. MRS Bull. 2005, 30, 368. https://doi.org/10.1557/mrs2005.100
  7. Hutter, E.; Fendler, J. H. Adv. Mater. 2004, 16, 1685. https://doi.org/10.1002/adma.200400271
  8. Evanoff, D. D.; Chumanov, G. J. Phys. Chem. B 2004, 108, 13948. https://doi.org/10.1021/jp047565s
  9. Mallick, K.; Witcomb, M. Mater. Chem. Phys. 2006, 97, 283. https://doi.org/10.1016/j.matchemphys.2005.08.011
  10. McFarland, A. D.; Van Duyne, R. P. Nano Lett. 2003, 3, 1057. https://doi.org/10.1021/nl034372s
  11. Zhang, J.; Malicka, J.; Gryczynski, I.; Lakowicz, J. R. J. Phys. Chem. B 2005, 109, 7643. https://doi.org/10.1021/jp0490103
  12. Nickel, U.; Castell, A. Z.; Poppl, K.; Schneider, S. Langmuir 2000, 16, 9087. https://doi.org/10.1021/la000536y
  13. Mukherjee, P.; Ahmad, A.; Mandal, D.; Senapati, S.; Sainkar, S. R.; Khan, M. I.; Parishcha, R.; Ajayakumar, P. V.; Alam, M.; Kumar, R.; Sastry, M. Nano Lett. 2001, 1, 515. https://doi.org/10.1021/nl0155274
  14. Mohanpuria, P.; Rana, N. K.; Yadav, S. K. J. Nanopart. Res. 2008, 10, 507. https://doi.org/10.1007/s11051-007-9275-x
  15. Vemula, P. K.; Aslam, U.; Mallia, V. A.; John, G. Chem. Mater. 2007, 19, 138. https://doi.org/10.1021/cm062464n
  16. Antolovich, M.; Prenzler, E. D.; Patsalidas, E.; McDonald, S.; Roboards, K. Analyst 2002, 127, 183. https://doi.org/10.1039/b009171p
  17. Robbins, R. J. J. Agric. Food Chem. 2003, 51, 2866. https://doi.org/10.1021/jf026182t
  18. Koh, L. L.; Ranford, J. O.; Robinson, W. T.; Svensson, J. O.; Tan, A. L. C.; Wu, D. Inorg. Chem. 1996, 35, 6466. https://doi.org/10.1021/ic9606441
  19. Mulvaney, P. Langmuir 1996, 12, 788. https://doi.org/10.1021/la9502711
  20. Pastoriza-Santos, I.; Liz-Marzan, L. M. J. Mater. Chem. 2008, 18, 1724. https://doi.org/10.1039/b716538b
  21. Jacob, J. A.; Mahal, H. S.; Biswas, N.; Mukherjee, T.; Kapoor, S. Langmuir 2008, 24, 528. https://doi.org/10.1021/la702073r
  22. Swami, A.; Selvakannan, P. R.; Pasricha, R.; Sastry, M. J. Phys. Chem. B 2004, 108, 19269. https://doi.org/10.1021/jp0465581
  23. Kaviya, S.; Santhanalakshmi, J.; Viswanathan, B.; Muthumary, J.; Srinivasan, K. Spectrochim. Acta Part A 2011, 79, 594. https://doi.org/10.1016/j.saa.2011.03.040
  24. Landsdown, A. B. G. J. Wound Care 2002, 11, 125. https://doi.org/10.12968/jowc.2002.11.4.26389

Cited by

  1. Controllable synthesis of protein-conjugated lead sulfide nanocubes by using bovine hemoglobin as a capping agent vol.16, pp.6, 2014, https://doi.org/10.1007/s11051-014-2438-7
  2. Synthesis and Optical Characteristics of PAM/HgS Nanocomposites vol.35, pp.4, 2014, https://doi.org/10.5012/bkcs.2014.35.4.1077
  3. Biomimetic synthesis and assembly of HgS nanocrystals via a protein inducing process vol.41, pp.11, 2015, https://doi.org/10.1007/s11164-015-1947-z
  4. Simple and green synthesis of protein-conjugated CdS nanoparticles and spectroscopic study on the interaction between CdS and zein vol.18, pp.9, 2016, https://doi.org/10.1007/s11051-016-3568-x
  5. Shape-controlled synthesis of protein-conjugated CdS nanocrystals (NCs) and study on the binding of Cd2+/CdS to trypsin vol.19, pp.7, 2017, https://doi.org/10.1007/s11051-017-3950-3
  6. Green and energy-efficient methods for the production of metallic nanoparticles vol.6, pp.None, 2013, https://doi.org/10.3762/bjnano.6.243
  7. Plant-Based Biosynthesis of Copper/Copper Oxide Nanoparticles: An Update on Their Applications in Biomedicine, Mechanisms, and Toxicity vol.11, pp.4, 2013, https://doi.org/10.3390/biom11040564