References
- Li, L.; Hu, J.; Alivistos, A. P. Nano Lett. 2001, 1, 349. https://doi.org/10.1021/nl015559r
- Rao, C. N. R.; Cheetham, A. K. J. Mater. Chem. 2001, 11, 2887. https://doi.org/10.1039/b105058n
- Prashant, K. J.; Huang, X.; El-Sayed, I. H.; El-Sayed, M. A. Acc. Chem. Res. 2008, 41, 1578. https://doi.org/10.1021/ar7002804
- Dahl, J. A.; Maddux, B. L. S.; Hutchison, J. E. Chem. Rev. 2007, 107, 2228. https://doi.org/10.1021/cr050943k
- Hutchison, J. E. ACS Nano 2008, 2, 395. https://doi.org/10.1021/nn800131j
- Haes, A. J.; Haynes, C. L.; McFarland, A. D.; Schatz, G. C.; Van Duyne, R. P.; Zou, S. MRS Bull. 2005, 30, 368. https://doi.org/10.1557/mrs2005.100
- Hutter, E.; Fendler, J. H. Adv. Mater. 2004, 16, 1685. https://doi.org/10.1002/adma.200400271
- Evanoff, D. D.; Chumanov, G. J. Phys. Chem. B 2004, 108, 13948. https://doi.org/10.1021/jp047565s
- Mallick, K.; Witcomb, M. Mater. Chem. Phys. 2006, 97, 283. https://doi.org/10.1016/j.matchemphys.2005.08.011
- McFarland, A. D.; Van Duyne, R. P. Nano Lett. 2003, 3, 1057. https://doi.org/10.1021/nl034372s
- Zhang, J.; Malicka, J.; Gryczynski, I.; Lakowicz, J. R. J. Phys. Chem. B 2005, 109, 7643. https://doi.org/10.1021/jp0490103
- Nickel, U.; Castell, A. Z.; Poppl, K.; Schneider, S. Langmuir 2000, 16, 9087. https://doi.org/10.1021/la000536y
- Mukherjee, P.; Ahmad, A.; Mandal, D.; Senapati, S.; Sainkar, S. R.; Khan, M. I.; Parishcha, R.; Ajayakumar, P. V.; Alam, M.; Kumar, R.; Sastry, M. Nano Lett. 2001, 1, 515. https://doi.org/10.1021/nl0155274
- Mohanpuria, P.; Rana, N. K.; Yadav, S. K. J. Nanopart. Res. 2008, 10, 507. https://doi.org/10.1007/s11051-007-9275-x
- Vemula, P. K.; Aslam, U.; Mallia, V. A.; John, G. Chem. Mater. 2007, 19, 138. https://doi.org/10.1021/cm062464n
- Antolovich, M.; Prenzler, E. D.; Patsalidas, E.; McDonald, S.; Roboards, K. Analyst 2002, 127, 183. https://doi.org/10.1039/b009171p
- Robbins, R. J. J. Agric. Food Chem. 2003, 51, 2866. https://doi.org/10.1021/jf026182t
- Koh, L. L.; Ranford, J. O.; Robinson, W. T.; Svensson, J. O.; Tan, A. L. C.; Wu, D. Inorg. Chem. 1996, 35, 6466. https://doi.org/10.1021/ic9606441
- Mulvaney, P. Langmuir 1996, 12, 788. https://doi.org/10.1021/la9502711
- Pastoriza-Santos, I.; Liz-Marzan, L. M. J. Mater. Chem. 2008, 18, 1724. https://doi.org/10.1039/b716538b
- Jacob, J. A.; Mahal, H. S.; Biswas, N.; Mukherjee, T.; Kapoor, S. Langmuir 2008, 24, 528. https://doi.org/10.1021/la702073r
- Swami, A.; Selvakannan, P. R.; Pasricha, R.; Sastry, M. J. Phys. Chem. B 2004, 108, 19269. https://doi.org/10.1021/jp0465581
- Kaviya, S.; Santhanalakshmi, J.; Viswanathan, B.; Muthumary, J.; Srinivasan, K. Spectrochim. Acta Part A 2011, 79, 594. https://doi.org/10.1016/j.saa.2011.03.040
- Landsdown, A. B. G. J. Wound Care 2002, 11, 125. https://doi.org/10.12968/jowc.2002.11.4.26389
Cited by
- Controllable synthesis of protein-conjugated lead sulfide nanocubes by using bovine hemoglobin as a capping agent vol.16, pp.6, 2014, https://doi.org/10.1007/s11051-014-2438-7
- Synthesis and Optical Characteristics of PAM/HgS Nanocomposites vol.35, pp.4, 2014, https://doi.org/10.5012/bkcs.2014.35.4.1077
- Biomimetic synthesis and assembly of HgS nanocrystals via a protein inducing process vol.41, pp.11, 2015, https://doi.org/10.1007/s11164-015-1947-z
- Simple and green synthesis of protein-conjugated CdS nanoparticles and spectroscopic study on the interaction between CdS and zein vol.18, pp.9, 2016, https://doi.org/10.1007/s11051-016-3568-x
- Shape-controlled synthesis of protein-conjugated CdS nanocrystals (NCs) and study on the binding of Cd2+/CdS to trypsin vol.19, pp.7, 2017, https://doi.org/10.1007/s11051-017-3950-3
- Green and energy-efficient methods for the production of metallic nanoparticles vol.6, pp.None, 2013, https://doi.org/10.3762/bjnano.6.243
- Plant-Based Biosynthesis of Copper/Copper Oxide Nanoparticles: An Update on Their Applications in Biomedicine, Mechanisms, and Toxicity vol.11, pp.4, 2013, https://doi.org/10.3390/biom11040564