DOI QR코드

DOI QR Code

Synthesis and Solution Properties of Zwitterionic Copolymer of Acrylamide with 3-[(2-Acrylamido)dimethylammonio]propanesulfonate

  • Xiao, Hui (Department of Polymer Science and Engineering, Sichuan University) ;
  • Hu, Jing (Department of Polymer Science and Engineering, Sichuan University) ;
  • Jin, Shuailin (Department of Polymer Science and Engineering, Sichuan University) ;
  • Li, Rui Hai (Department of Polymer Science and Engineering, Sichuan University)
  • Received : 2013.04.09
  • Accepted : 2013.06.06
  • Published : 2013.09.20

Abstract

A novel zwitterionic monomer 3-[(2-acrylamido)dimethylammonio]propanesulfonate (DMADAS) was designed and synthesized in this study. Then it was polymerized with acrylamide (AM) by free radical polymerization in 0.5 mol/L NaCl solution with ammonium persulfate ($(NH_4)_2S_2O_8$) and sodium sulfate ($NaHSO_3$) as initiator. The structure and composition of DMADAS and acrylamide-3-[(2-acrylamido)-dimethylammonio]propanesulfonate copolymer (P-AM-DMADAS) were characterized by FT-IR spectroscopy, $^1H$ NMR and elemental analyses. Isoelectric point (IEP) of P-AM-DMADAS was tested by nanoparticle size and potential analyzer. Solution properties of copolymer were studied by reduced viscosity. Antipolyelectrolyte behavior was observed and was found to be enhanced with increasing DMADAS content in copolymer. The results showed that the viscosity of P-AM-DMADAS is 5.472 dl/g in pure water. Electrolyte was added, which weakened the mutual attraction between sulfonic acid group and quaternary ammonium group. The conformation became loose, which led to the increase of reduced viscosity. The ability of monovalent and divalent cation influencing the viscosity of zwitterionic copolymer obeyed the following sequence: $Li^+$ < $Na^+$ < $K^+$, $Mg^{2+}$ < $Ca^{2+}$ < $Ba^{2+}$, and that of anion is in the order: $Cl^-$ < $Br^-$ < $I^-$, $CO{_3}^{2-}$ > $SO{_3}^{2-}{\approx}SO{_4}^{2-}$.

Keywords

References

  1. Andrew, B. L.; Charles, L. M. Chem. Rev. 2002, 102, 4177-4189. https://doi.org/10.1021/cr020371t
  2. Xuan, F. Q.; Liu, J. S. Polym. Int. 2009, 58, 1350-1361. https://doi.org/10.1002/pi.2679
  3. Kamachi, M.; Kurihara, M.; Stille, J. K. Macromolecules 1972, 5, 161-167. https://doi.org/10.1021/ma60026a013
  4. Kurihara, M.; Kamachi, M.; Stille, J. K. J. Polym. Sci., Polym. Chem. Ed. 1973, 11, 587-610. https://doi.org/10.1002/pol.1973.170110308
  5. Varoqui, R.; Tran, Q.; Pefferkorn, E. Macromolecules 1979, 12, 831-835. https://doi.org/10.1021/ma60071a008
  6. Andrey, V. D.; Micheal, R. J. Phys. II France 1995, 5, 677-697. https://doi.org/10.1051/jp2:1995157
  7. Xiao, H.; Tao, R.; Cui, W. J. Appl. Polym. Sci. Published online.
  8. Dobrynin, A. V.; Colby, R. H.; Rubinstein, M. J. Polym. Sci. Part B: Polym. Phys. 2004, 42, 3513. https://doi.org/10.1002/polb.20207
  9. Ibraeva, Z. E.; Hahn, M.; Jaeger, W.; Bimendina, L. A.; Kudaibergenov, S. E. Macromol. Chem. Phys. 2004, 205, 2464-2472. https://doi.org/10.1002/macp.200400242
  10. Xu, S.; Cao, L.; Wu, R.; Wang, J. J. Appl. Polym. Sci. 2006, 101, 1995. https://doi.org/10.1002/app.23722
  11. Das, M.; Kumacheva, E. Colloid Polym. Sci. 2006, 284, 1073. https://doi.org/10.1007/s00396-006-1483-x
  12. Baker, J. P.; Blanch, H. W.; Prausnitz, J. M. Polymer 1995, 36, 1061. https://doi.org/10.1016/0032-3861(95)93608-O
  13. Gui, Z.; Qian, J.; An, Q.; Xu, H.; Zhao, Q. European Polymer Journal 2009, 45, 1403-1411. https://doi.org/10.1016/j.eurpolymj.2009.02.010
  14. Berlinova, I. V.; Dimitrov, I. V.; Kalinova, R. G.; Vladimirov, N. G. Polymer 2000, 41, 831-837. https://doi.org/10.1016/S0032-3861(99)00264-5
  15. Armentrout, R. S.; McCormick, C. L. Macromolecules 2000, 33, 419-424. https://doi.org/10.1021/ma991133b
  16. Zhang, L. M.; Tan, Y. B.; Li, Z. M. Carbohydr. Polym. 2001, 44, 255-260. https://doi.org/10.1016/S0144-8617(00)00225-3
  17. Zhang, L. M.; Chen, D. Q. Macromol. Mater Eng. 2003, 288, 252. https://doi.org/10.1002/mame.200390016
  18. Zhang, L. M.; Tan, Y. B.; Li, Z. M. Colloid Polym. Sci. 1999, 277, 1001-1004. https://doi.org/10.1007/s003960050482
  19. Zhang, J.; Zhang, L. M.; Li, Z. M. Appl. Polym. Sci. 2000, 78, 537. https://doi.org/10.1002/1097-4628(20001017)78:3<537::AID-APP80>3.0.CO;2-W
  20. Bruton, J. R.; McLaurine, H. C. SPE26327, 1993.
  21. Peiffer, D. G.; Btunswick, E. et al. US 4626285, 1986.
  22. Fevola, M. J.; Bridges, J. K.; Kellum, M. G.; Hester, R. D.; McCormick, C. L. J. Appl. Polym. Sci. 2004, 94, 24-39. https://doi.org/10.1002/app.20700
  23. Nelly, B.; Andren, L. Polymer 1996, 10, 2011-2019.
  24. Ali, S. A.; Rasheed, A. Polymer 1999, 40, 6849-6857. https://doi.org/10.1016/S0032-3861(99)00010-5
  25. Lee, W.-F.; Huang, G.-Y. Polymer 1996, 37, 4389-4395. https://doi.org/10.1016/0032-3861(96)00258-3
  26. Zheng, Z.; Timothy, C.; Sheng, F. C.; Shao, Y. J. Langmuir 2006, 22, 10072-10077. https://doi.org/10.1021/la062175d
  27. Kudaibergenov, S. F.; Ciferri, A. Macromol. Rapid Commun. 2007, 28, 1969-1986. https://doi.org/10.1002/marc.200700197
  28. Kudaibergenov, S.; Jaeger, W.; Laschewsky, A. Advances in Polymer Science 2006; pp 157-224.
  29. Liaw, D.-J.; Huang, C.-C. Macromol. Chem. Phys. 2000, 201, 1101-1107. https://doi.org/10.1002/1521-3935(20000701)201:11<1101::AID-MACP1101>3.0.CO;2-2
  30. Cheng, X. X.; Zhang, X. F.; Liu, J. S.; Xu, T. W. European Polymer Journal 2008, 44, 918-931. https://doi.org/10.1016/j.eurpolymj.2007.12.019
  31. Jia, X.; Zhang, Y. J. J. Appl. Polym. Sci. 2010, 118, 1152-1159.
  32. Ye, L.; Huang, R.; Wu, J.; Hoffmann, H. Colloid Polym. Sci. 2004, 282, 305-313. https://doi.org/10.1007/s00396-003-0935-9
  33. Kathmann, E.; White, L.; McCormick, C. Macromolecules 1997, 30, 5297-5304. https://doi.org/10.1021/ma961214x
  34. Lufrano, F.; Squadrito, G.; Patti, Q.; Passalacqua, E. J. Appl. Polym. Sci. 2000, 77, 1250. https://doi.org/10.1002/1097-4628(20000808)77:6<1250::AID-APP9>3.0.CO;2-R
  35. Andrew, B.; Lowe; Charles, L. Chem. Rev. 2002, 102, 4177-4189. https://doi.org/10.1021/cr020371t
  36. Liaw, D. J.; Huang, C. C. Macro Chem. Phys. 2000; in press.
  37. Liaw, D. J.; Lee, W. F.; Whung, Y. C.; Lin, M. C. J. Appl. Polym. Sci. 1987, 37, 999.
  38. Salamone, J. C.; Volksen, W.; Olson, A. P.; Israel, S. C. Polymer 1978, 19, 1157. https://doi.org/10.1016/0032-3861(78)90064-2
  39. Alfrey, T.; Morawetz, H.; Fitzgerald, E. B.; Fuoss, R. M. J. Am. Chem. Soc. 1950, 72, 1864.
  40. Ascoli, F.; BotreA, C. J. Polym. Sci. 1962, 62, S56-S59. https://doi.org/10.1002/pol.1962.1206217422
  41. Pearson, R. G. Journal of the American Chemical Society 1963, 85, 3533-3539. https://doi.org/10.1021/ja00905a001

Cited by

  1. Synthesis of zwitterionic acrylamide copolymers for biocompatible applications pp.1530-8030, 2017, https://doi.org/10.1177/0883911517707776