DOI QR코드

DOI QR Code

Synthesis and Characterization of Red Electrophosphorescent Polymers Containing Pendant Iridium(III) Complex Moieties

  • Xu, Fei (Department of Chemistry, and Chemistry Institute for Functional Materials, Pusan National University) ;
  • Mi, Dongbo (Department of Chemistry, and Chemistry Institute for Functional Materials, Pusan National University) ;
  • Bae, Hong Ryeol (Department of Information Display and Advanced Display Research Center, Kyung Hee University) ;
  • Suh, Min Chul (Department of Information Display and Advanced Display Research Center, Kyung Hee University) ;
  • Yoon, Ung Chan (Department of Chemistry, and Chemistry Institute for Functional Materials, Pusan National University) ;
  • Hwang, Do-Hoon (Department of Chemistry, and Chemistry Institute for Functional Materials, Pusan National University)
  • Received : 2013.04.16
  • Accepted : 2013.06.06
  • Published : 2013.09.20

Abstract

A series of fluorene-carbazole copolymers containing the pendant phosphor chromophore $Ir(absn)_2(acac)$ (absn: 2-(1-naphthyl)benzothiazole; acac: acetylacetone) were designed and synthesized via Yamamoto coupling. In the film state, these copolymers exhibited absorption and emission peaks at approximately 389 and 426 nm, respectively, which originated from the fluorene backbone. However, in electroluminescent (EL) devices, a significantly red-shifted emission at approximately 611 nm was observed, which was attributed to the pendant iridium(III) complex. Using these copolymers as a single emission layer, polymer light-emitting devices with ITO/PEDOT:PSS/polymer:DNTPD/TmPyPb/LiF/Al configurations exhibited a saturated red emission at 611 nm. The attached iridium(III) complex had a significant effect on the EL performance. A maximum luminous efficiency of 0.85 cd/A, maximum external quantum efficiency of 0.77, maximum power efficiency of 0.48 lm/W, and maximum luminance of 883 $cd/m^2$ were achieved from a device fabricated with the copolymer containing the iridium(III) complex in a 2% molar ratio.

Keywords

References

  1. Baldo, M. A.; O'Brien, D. F.; You, Y.; Shoustikov, A.; Sibley, S.; Thompson, M. E.; Forrest, S. R. Nature 1998, 395, 151. https://doi.org/10.1038/25954
  2. O'Brien, D. F.; Baldo, M. A.; Thompson, M. E.; Forrest, S. R. Appl. Phys. Lett. 1999, 74, 442. https://doi.org/10.1063/1.123055
  3. Yang, C. L.; Zhang, X. W.; You, H.; Zhu, L. Y.; Chen, L. Q.; Zhu, L. N.; Tao, Y. T.; Ma, D. G.; Shuai, Z. G.; Qin, J. G. Adv. Funct. Mater. 2007, 17, 651. https://doi.org/10.1002/adfm.200600663
  4. Baldo, M. A.; Adachi, C.; Forrest, S. R. Phys. Rev. B 2000, 62, 10967. https://doi.org/10.1103/PhysRevB.62.10967
  5. Gong, X.; Ostrowski, J. C.; Bazan, G. C.; Moses, D.; Heeger, A. J.; Liu, M. S.; Jen, A. K.-Y. Adv. Mater. 2003, 15, 45. https://doi.org/10.1002/adma.200390007
  6. Lee, C.-L.; Lee, K. B.; Kim, J.-J. Appl. Phys. Lett. 2000, 77, 2280. https://doi.org/10.1063/1.1315629
  7. Furuta, P. T.; Deng, L.; Garon, S.; Thompson, M. E.; Frechet, J. M. J. J. Am. Chem. Soc. 2004, 126, 15388. https://doi.org/10.1021/ja0446247
  8. Park, M.-J.; Lee, J.; Kwak, J.; Jung, I. H.; Park, J.-H.; Kong, H.; Lee, C.; Hwang, D.-H.; Shim, H.-K. Macromolecules 2009, 42, 5551. https://doi.org/10.1021/ma9007175
  9. Xu, F.; Kim, H. U.; Mi, D.; Lim, J. M.; Hwang, J. H.; Cho, N. S.; Lee, J.-I.; Hwang, D.-H. Bull. Korean Chem. Soc. 2013, 34, 399. https://doi.org/10.5012/bkcs.2013.34.2.399
  10. Guan, R.; Xu, Y.; Ying, L.; Yang, W.; Wu, H.; Chen, Q.; Cao, Y. J. Mater. Chem. 2009, 19, 531. https://doi.org/10.1039/b813927j
  11. Hertel, D.; Setayesh, S.; Nothofer, H.-G.; Scherf, U.; Mullen, K.; Bassler, H. Adv. Mater. 2001, 13, 65. https://doi.org/10.1002/1521-4095(200101)13:1<65::AID-ADMA65>3.0.CO;2-Q
  12. Evans, N. R.; Devi, L. S.; Mak, C. S. K.; Watkins, S. E.; Pascu, S. I.; Kohler, A.; Friend, R. H.; Williams, C. K.; Holmes, A. B. J. Am. Chem. Soc. 2006, 128, 6647. https://doi.org/10.1021/ja0584267
  13. Xu, F.; Lim, J. M.; Kim, H. U.; Mi. D.; Lee, J. Y.; Joo, C. W.; Cho, N. S.; Lee, J.-I.; Hwang, D.-H. Synth. Met. 2012, 162, 2414. https://doi.org/10.1016/j.synthmet.2012.11.025
  14. Chen, X.; Liao, J.-L.; Liang, Y.; Ahmed, M. O.; Tseng, H.-E.; Chen, S.-A. J. Am. Chem. Soc. 2003, 125, 636. https://doi.org/10.1021/ja0211151
  15. Nonoyama, M. J. Organomet. Chem. 1975, 86, 263. https://doi.org/10.1016/S0022-328X(00)89620-5
  16. Jiang, J.; Jiang, C.; Yang, W.; Zhen, H.; Huang, F.; Cao, Y. Macromolecules 2005, 38, 4072. https://doi.org/10.1021/ma0474473
  17. Chen, Y.-C.; Huang, G.-S.; Hsiao, C.-C.; Chen, S.-A. J. Am. Chem. Soc. 2006, 128, 8549. https://doi.org/10.1021/ja060936t
  18. Sun, Q. J.; Wang, H. Q.; Yang, C. H.; Li, Y. F. J. Mater. Chem. 2003, 13, 800. https://doi.org/10.1039/b209469j
  19. Oh, H.-Y.; Lee, C.; Lee, S. Org. Electron. 2009, 10, 163. https://doi.org/10.1016/j.orgel.2008.10.015
  20. Zhang, K.; Chen, Z.; Zou, Y.; Gong, S.; Yang, C.; Qin, J.; Cao, Y. Chem. Mater. 2009, 21, 3306. https://doi.org/10.1021/cm9008305
  21. Jiang, J.; Xu, Y.; Yang, W.; Guan, R.; Liu, Z.; Zhen, H.; Cao, Y. Adv. Mater. 2006, 18, 1769. https://doi.org/10.1002/adma.200502740

Cited by

  1. High Triplet Energy Level Achieved by Tuning the Arrangement of Building Blocks in Phosphorescent Polymer Backbones for Furnishing High Electroluminescent Performances in Both Blue and White Organic Light-Emitting Devices vol.9, pp.19, 2017, https://doi.org/10.1021/acsami.7b04509