DOI QR코드

DOI QR Code

Effects of Red, Blue, White, and Far-red LED Source on Growth Responses of Wasabia japonica Seedlings in Plant Factory

식물공장에서 적색, 청색, 백색 및 원적색 LED 처리에 따른 고추냉이의 생육반응

  • Kim, Hae Ran (Warm-Temperature and Subtropical Forest Research Center, Korea Forest Research Institute) ;
  • You, Young Han (Department of Life Science, Kongju National University)
  • 김해란 (국립산림과학원 난대아열대산림연구소) ;
  • 유영한 (국립공주대학교 생명과학과)
  • Received : 2013.01.09
  • Accepted : 2013.03.05
  • Published : 2013.08.31

Abstract

This study was conducted to establish the optimum LED light source and quality for growth of Wasabia japonica seedlings in the LED chamber plant factory system. The light treatments were combined with four colors LED (red, blue, white, far-red), irradiation time ratio of the red and blue LED per minute(1:1, 2:1, 5:1, 10:1), and duty ratio of mixed light (100%, 99%, 97%). The growth response of W. japonica was the greatest in the R + B mixed light treatment, and seedlings grown in the red LED alone was higher than blue LED alone in the monochromic radiation treatments. In the R + B mixed LED, 1:1 ratio of R and B was the best for total biomass and tiller production. In mixed light treatments, the growth response of W. japonica was highest in the 100% duty ratio with R + B mixed light, while that was highest in the 97% duty ratio with R + B + W mixed light. Leaf area and dry weight were increased in the red light treatment alone, while specific leaf area was increased in the blue light alone. With the increasing red LED light ratio, leaf area and dry weight of W. japonica was significantly increased under the R + B mixed light treatment. In mixed light treatments, the leaf growth responses of W. japonica was highest in the 97% duty ratio with R+B mixed light, while that was highest in the 100% duty ratio with R + B + W mixed light. For cultivating W. japonica in a plant factory, treating red LED supplemented with a blue light or higher ratio of the red to blue LED was benefit to promote the growth of W. japonica.

본 연구는 식물공장용 LED 챔버 시스템에서 고추냉이의 생육반응에 미치는 LED 광원 및 광질의 영향을 알아보기 위해 적색, 청색, 백색 그리고 원적색광의 단일 및 혼합처리, 적색광과 청색광의 비율 그리고 duty비 등을 다양하게 처리하여 수행하였다. 고추냉이의 생육반응은 적색 + 청색 혼합광에서 가장 높았고, 단일광 조건에서는 청색광보다 적색광 하에서 식물체 생물량이 높았다. 고추냉이의 식물체 생물량과 분얼수는 적색과 청색광의 비율이 1:1인 조건에서 가장 높았다. 적색과 청색광을 혼합하여 처리 시 고추냉이의 생육반응은 duty비가 100%일 때 높은 반면, 적색과 청색광에 백색광을 첨가하여 처리 하였을 때는 duty비가 가장 낮은 97%에서 높았다. 엽면적과 잎건중량은 적색광에서 가장 높은 반면, 비엽면적은 청색광에서 가장 높았다. 적색과 청색 혼합광에서 엽면적과 잎건중량은 적색광의 비율이 높거나, duty비가 낮을수록 증가하였고, 백색광을 첨가한 조건에서는 duty비가 높을수록 증가했다. 이상의 결과를 종합해보면, 고추냉이는 단일광을 처리하는 것보다 적색과 청색광을 혼합하여 처리해 주거나, 청색광보다 적색광의 비율을 더 높여주는 것이 고추냉이의 생육 및 품질을 향상시켜 줄것으로 판단된다.

Keywords

References

  1. Brown, C.S., A.C. Schuergerand, and J.C. Seger. 1995. Growth and photomorphogenesis of pepper plants under red lightemitting diodes with supplemental blue or far-red lighting. J. Amer. Soc. Hort. Sci. 120:808-813.
  2. Choi, K.Y., Y.B. Lee, J.H. Lee, and T. Nasangargale. 2007. Hydroponic culture system for wasabi leaf production. J. Bio-Environ. Control 16:1-6.
  3. Goins, G.D., N.C. Yorio, M.M. Sanwo, and C.S. Brown. 1997. Photomorphogenesis, photosynthesis and seed yield of wheat plants grown under red light-emitting diodes (LEDs) with and without supplemental blue lighting. J. Exp. Bot. 48:1407-1413. https://doi.org/10.1093/jxb/48.7.1407
  4. Gunn, S., J.F. Farrar, B.E. Collis, and M. Nason. 1999. Specific leaf area in barley: Individual leaves versus whole plants. New Phytol. 143:45-51. https://doi.org/10.1046/j.1469-8137.1999.00434.x
  5. Heo, J.W., Y.B. Lee, D.E. Kim, Y.S. Chang, and C.H. Chun. 2010a. Effects of supplementary LED lighting on growth and biochemical parameters in Dieffenbachia amoena 'Camella' and Ficus elastic 'Melany'. Kor. J. Hort. Sci. Technol. 28:51-58.
  6. Heo, J.W., Y.B. Lee, Y.S. Chang, J.T. Lee, and D.B. Lee. 2010b. Effects of light quality and lighting type using an LED chamber system on chrysanthemum growth and development cultured in vitro. Korean J. Environ. Agric. 29:374-380. https://doi.org/10.5338/KJEA.2010.29.4.374
  7. Hyun, D.Y., S.W. Lee, Y.B. Kim, S.W. Kang, G.S. Kim, and S.W. Cha. 2010. Effect of red, blue and white LED irradiation on growth characteristics and saponin contents in Panax ginseng C.A. Meyer Korean J. ginseng by hydroponic culture. Kor. J. Hort. Sci. Technol. 28(Suppl. 1):69. (Abstr.)
  8. Jao, R.C. and W. Fang. 2004. Effects of frequency and duty ratio on the growth of potato plantlets in vitro using light-emitting diodes. HortScience 39:375-379.
  9. Kim, H.M., J.S. Eun, and E.S. Rha. 1995. Effect of temperature and shading on the growth and major disease incidence of Wasabi. J. Bio. Fac. Env. 4:240-245.
  10. Kim, J.H. and S.D. Chang. 2009. Industrialization condition and possibility of plant factory. Kor. J. Agr. Manage. Policy 36:918-948.
  11. Kim, S.J, E.J. Hahn, J.W. Heo, and K.Y. Paek. 2004. Effects of LEDs on net photosynthetic rate, growth and leaf stomata of chrysanthemum plantlets in vitro. Sci. Hort. 101:143-151. https://doi.org/10.1016/j.scienta.2003.10.003
  12. Kim, Y.H., D.E. Kim, G.I. Lee, D.H. Kang, and H.J. Lee. 2011. Current status and development direction of the domestic and overseas for the artificial plant factory. Kor. J. Hort. Sci. Technol. 29(Suppl. II):37. (Abstr.)
  13. Kim, Y.S., J.G. Kim, Y.S. Lee, and I.J. Kang. 2005. Comparison of the chemical components of buckwheat seed and sprout. J. Korean Soc. Food Sci. Nutr. 34:81-86. https://doi.org/10.3746/jkfn.2005.34.1.081
  14. Lee, J.G., S.S. Oh, S.H. Cha, Y.A. Jang, S.Y. Kim, Y.C. Um, and S.R. Cheong. 2010. Effects of red/blue light ratio and short-term light quality conversion on growth and anthocyanin. J. Bio-Environ. Control 19:351-359.
  15. Louwerse, W. and W.V.D. Zweerde. 1977. Photosynthesis, transpiration and leaf morphology of Phaseolus vulgaris and Zea mays grown at different temperatures in artificial and sunlight. Photosynthetica 11:11-21.
  16. Nam, M.W. 2011. Effects of blue and red LED irradiation as artificial light sources in plant factory on growth and quality of pak-choi. MA Diss., Chonbuk National Univ., Jeonju, Korea
  17. Nishimura, T., Y. Mori, T. Furukawa, A. Kadota, and T. Koshiba. 2006. Red light causes a reduction in IAA levels at the apical tip by inhibiting de novo biosynthesis from tryptophan in maize coleoptiles. Planta 224:1427-1435. https://doi.org/10.1007/s00425-006-0311-3
  18. Noh, H.J. and H.Y. Jeong. 2002. Understanding of statistical analysis by STATISTICA. Hyungseul Press, Seoul, Korea.
  19. Park, J.S., J.T. Lim, S.W. Yoon, and J.K. Hwangbo. 2011. Effects of red/blue LED light ratio on seedling growth of several horticultural plants. Kor. J. Hort. Sci. Technol. 29(Suppl. 1):84. (Abstr.)
  20. Perez-Balibrea, S., D.A. Moreno, and C. Garcia-Viguera. 2008. Influence of light on health-promoting phytochemicals of broccoli sprouts. J. Sci. Food Agr. 88:904-910. https://doi.org/10.1002/jsfa.3169
  21. Schuerger, A.C., C.S. Brown, and E.C. Stryjewski. 1997. Anatomical features of pepper plants (Capsicum annuum L.) grown under red light-emitting diodes supplemented with blue or far-red light. Ann. Bot. 79:273-282. https://doi.org/10.1006/anbo.1996.0341
  22. Shin, S.I. and J.M. Lee. 1998. Study on antimicrobial and antimutagenic activity of horseradish (Wasabia japonica) root extracts. J. Korean Fish. Soc. 31:835-841.
  23. Yeh, N. and J.P. Chung. 2009. High-brightness LEDs-energy efficient lighting sources and their potential in indoor plant cultivation. Renew. Sustain. Energy Rev. 13:2175-2180. https://doi.org/10.1016/j.rser.2009.01.027
  24. Yoon, C.G. 2012. A study on the LED illumination lamp development and application for plant factory. PhD Diss., Hongik Univ., Seoul, Korea.

Cited by

  1. Analysis of Antioxidant Content and Growth of Agastache rugosa as Affected by LED Light Qualities vol.27, pp.3, 2018, https://doi.org/10.12791/KSBEC.2018.27.3.260
  2. Air anions enhance lettuce growth in plant factories vol.55, pp.4, 2013, https://doi.org/10.1007/s13580-014-1016-3
  3. 광중단 처리에 있어서 광원 및 광질이 스탠다드 국화의 생육 및 개화에 미치는 영향 vol.23, pp.4, 2014, https://doi.org/10.12791/ksbec.2014.23.4.263
  4. LED 광질에 따른 고구마의 묘소질 및 괴근 수량성 vol.23, pp.4, 2014, https://doi.org/10.12791/ksbec.2014.23.4.356
  5. 인공광 이용형 Common Ice Plant 식물공장의 실용적 설계 vol.23, pp.4, 2013, https://doi.org/10.12791/ksbec.2014.23.4.371
  6. 야간 적색 LED 처리가 'Fuji'/M.26 사과나무의 광합성, 영양생장 및 과실 품질에 미치는 영향 vol.25, pp.1, 2013, https://doi.org/10.12791/ksbec.2016.25.1.57
  7. 밀폐형 식물 생산 시스템에서 형광등 종류에 따른 시금치의 생육 및 기능성물질 함량 vol.26, pp.4, 2013, https://doi.org/10.12791/ksbec.2017.26.4.386
  8. Morphological response of tomato seedling under two periods of different red and blue photon flux ratio vol.5, pp.10, 2013, https://doi.org/10.21833/ijaas.2018.10.004
  9. The Growth and Development of ‘Mini Chal’ Tomato Plug Seedlings Grown under Various Wavelengths Using Light Emitting Diodes vol.9, pp.3, 2013, https://doi.org/10.3390/agronomy9030157
  10. Flowering and Morphogenesis of Kalanchoe in Response to Quality and Intensity of Night Interruption Light vol.8, pp.4, 2019, https://doi.org/10.3390/plants8040090
  11. 식물공장의 LED 광강도 변화에 따른 식물성장 변화에 관한 연구 vol.21, pp.3, 2013, https://doi.org/10.5762/kais.2020.21.3.304
  12. Simulation of Polarization Image Based on Intensity Image vol.34, pp.11, 2013, https://doi.org/10.1142/s0218001420540282