DOI QR코드

DOI QR Code

TWO CHARACTERIZATION THEOREMS FOR LIGHTLIKE HYPERSURFACES OF A SEMI-RIEMANNIAN SPACE FORM

  • Jin, Dae Ho (Department of Mathematics, Dongguk University)
  • Received : 2013.02.14
  • Accepted : 2013.07.15
  • Published : 2013.09.25

Abstract

We study lightlike hypersurfaces M of a semi-Riemannian space form $\tilde{M}(c)$ with a semi-symmetric non-metric connection whose structure vector field is tangent to M. Our main result is two characterization theorems for such a lightlike hypersurface.

Keywords

References

  1. Ageshe, N.S. and Chafle, M.R.: A semi-symmetric non-metric connection on a Riemannian manifold, Indian J. Pure Appl. Math. 23(6) (1992), 399-409.
  2. Calin, C.: Contributions to geometry of CR-submanifold, Thesis, University of Iasi (Romania, 1998).
  3. de Rham, G.: Sur la reductibilite d'un espace de Riemannian, Comm. Math. Helv. 26 (1952), 328-344. https://doi.org/10.1007/BF02564308
  4. Duggal, K.L. and Bejancu, A.: Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications, Kluwer Acad. Publishers, Dordrecht, 1996.
  5. Duggal, K.L. and Jin, D.H.: Null curves and Hypersurfaces of Semi-Riemannian Manifolds, World Scientific, 2007.
  6. Duggal, K.L. and Jin, D.H.: A Classification of Einstein lightlike hypersurfaces of a Lorentzian space form, J. Geom. Phys. 60 (2010), 1881-1889. https://doi.org/10.1016/j.geomphys.2010.07.005
  7. Duggal, K.L. and Sahin, B.: Lightlike Submanifolds of indefinite Sasakian manifolds, Int. J. Math. Math. Sci., 2007, Art ID 57585, 1-21.
  8. Duggal, K.L. and Sahin, B.: Generalized Cauchy-Riemann lightlike Submanifolds of indefinite Sasakian manifolds, Acta Math. Hungar. 122(1-2) (2009), 45-58. https://doi.org/10.1007/s10474-008-7221-8
  9. Duggal, K.L. and Sahin, B.: Differential geometry of lightlike submanifolds, Frontiers in Mathematics, Birkhauser, 2010.
  10. Hawking, S.W. and Ellis, G.F.R.: The large scale structure of space-time, Cambridge University Press, Cambridge, 1973.
  11. Jin, D.H.: Geometry of lightlike hypersurfaces of a semi-Riemannian space form with a semi-symmetric non-metric connection, submitted in Indian J. Pure Appl. Math.
  12. Jin, D.H.: Einstein lightlike hypersurfaces of a Lorentz space form with a semi- symmetric non-metric connection, accepted in Bull. Korean Math. Soc. 2012. https://doi.org/10.4134/BKMS.2013.50.4.1367
  13. Jin, D.H.: Two characterization theorems for irrotational lightlike geometry, accepted in Commun. Korean Math. Soc. 2013.
  14. Jin, D.H.: Einstein half lightlike submanifolds of a Lorentzian space form with a semi-symmetric non-metric connection, accepted in Journal of Inequalities and Applications, 2013.
  15. Jin, D.H.: Lightlike submanifolds of a semi-Riemannian manifold with a semi- symmetric non-metric connection, J. Korean Soc. Math. Edu. Ser. B: Pure Appl. Math. 19(3) (2012), 211-228. https://doi.org/10.7468/jksmeb.2012.19.3.211
  16. Kang, T.H., Jung, S.D., Kim, B.H., Pak, H.K. and Pak, J.S.: Lightlike hyper- surfaces of indefinite Sasakian manifolds, Indian J. Pure Appl. Math. 34 (2003), 1369-1380.
  17. Kupeli, D.N.: Singular Semi-Riemannian Geometry, Kluwer Academic, 366, 1996.
  18. Massamba, F.: Screen almost conformal lightlike geometry in indefinite Ken- motsu space forms, Int. Electron. J. Geom. 5(2) (2012), 36-58.
  19. O'Neill, B., Semi-Riemannian Geometry with Applications to Relativity, Academic Press, 1983.
  20. Yasar, E., Coken, A.C. and Yucesan, A.: Lightlike hypersurfaces in semi- Riemannian manifold with semi-symmetric non-metric connection, Math. Scand. 102 (2008), 253-264. https://doi.org/10.7146/math.scand.a-15061