DOI QR코드

DOI QR Code

Thermal Stratification and Heat Loss in Underground Thermal Storage Caverns with Different Aspect Ratios and Storage Volumes

지하 열저장 공동의 종횡비와 저장용량에 따른 열성층화 및 열손실

  • 박도현 (한국지질자원연구원 지구환경연구본부) ;
  • 류동우 (한국지질자원연구원 지구환경연구본부) ;
  • 최병희 (한국지질자원연구원 지구환경연구본부) ;
  • 선우춘 (한국지질자원연구원 지구환경연구본부) ;
  • 한공창 (한국지질자원연구원 지구환경연구본부)
  • Received : 2013.08.12
  • Accepted : 2013.08.28
  • Published : 2013.08.31

Abstract

Thermal stratification in heat stores is essential to improve the efficiency of energy storage systems and deliver more useful energy on demand. It is generally well known that the degree of thermal stratification in heat stores varies depending on the aspect ratio (the height-to-width ratio) and size of the stores. The present study aims to investigate the effect of the aspect ratio and storage volume of rock caverns for storing hot water on thermal stratification in the caverns and heat loss to the surroundings. Heat transfer simulations using a computational fluid dynamics code, FLUENT were performed at different aspect ratios and storage volumes of rock caverns. The variation of thermal stratification with respect to time was examined using an index to quantify the degree of stratification, and the heat loss to the surroundings was evaluated. The results of the numerical simulations demonstrated that the thermal stratification in rock caverns was improved by increasing the aspect ratio, but this effect was not remarkable beyond an aspect ratio of 3-4. When the storage volume of rock caverns was large, a higher thermal stratification was maintained for a relatively longer time compared to caverns with a small storage volume, but the difference in thermal stratification between the two cases tended to decrease as the aspect ratio became larger. In addition, the numerical results showed that the heat loss to the surrounding rock tended to increase with an increase in aspect ratio because the surface area of rock caverns increased as the aspect ratio became larger. The total heat loss from multiple small caverns with a reduced storage volume per cavern was larger compared to a single cavern with the same total storage volume as that of the multiple caverns.

열저장소 내 열성층화는 에너지저장 시스템의 효율을 향상시키고 수요 발생시 더 많은 유효에너지를 공급하기 위해 필수적인 기술이다. 일반적으로 저장소의 종횡비(폭에 대한 높이의 비)와 크기에 따라 열성층도가 달라지는 것으로 알려져 있다. 본 논문은 열수 저장을 위한 암반공동의 종횡비와 저장용량이 저장공동 내 열성층화와 외부로의 열손실에 미치는 영향을 조사하는 데 연구 목적이 있다. 이를 위해 전산유체역학 코드인 FLUENT를 이용하여 암반공동의 종횡비와 저장용량에 따른 열전달 시뮬레이션을 수행하였다. 성층도 정량화 지수를 이용하여 시간경과에 따른 열성층화의 변화를 분석하였으며, 저장공동 외부로의 열손실을 평가하였다. 분석 결과, 종횡비가 증가함에 따라 공동 내 열성층화가 향상되는 경향을 보였으나, 종횡비 3-4 이상부터는 이러한 영향이 크지 않은 것으로 분석되었다. 저장용량이 작은 암반공동에 비해 용량이 큰 암반공동에서 상대적으로 긴 시간 동안 열성층화가 높게 유지되는 것으로 분석되었으나, 종횡비 증가에 따라 저장용량이 다른 공동들간의 성층화 차이가 줄어드는 경향을 나타냈다. 암반공동의 종횡비가 커질수록 공동의 표면적이 늘어나 종횡비의 증가에 따라 주변 암반으로의 열손실이 증가하는 경향을 보였으며, 단위 저장용량을 줄여 소규모 다중공동을 적용하는 경우, 총 저장용량이 동일한 단일공동에 비해 전체 열손실량이 증가하는 것으로 분석되었다.

Keywords

References

  1. ANSYS, 2012, FLUENT software, ANSYS Inc., Canonsburg, Pennsylvania, http://www.ansys.com/Products/Simulation+Technology/Fluid+Dynamics/ANSYS+Fluent, accessed on May 21, 2012.
  2. Bouhdjar A. and A. Harhad, 2002, Numerical analysis of transient mixed convection flow in storage tank: influence of fluid properties and aspect ratios on stratification, Renewable Energy 25, 555-567. https://doi.org/10.1016/S0960-1481(01)00090-8
  3. Cho C.H., J. Urquidi and G.W. Robinson, 1999, Molecularlevel description of temerature and pressure effects on the viscosity of water, Journal of Chemical Physics 111. 22, 10171-10176. https://doi.org/10.1063/1.480367
  4. Cho C.H., J. Urquidi, S. Singh and G.W. Robinson, 1999, Thermal offset viscosities of liquid $H_{2}O$, $D_{2}O$, $T_{2}O$, Journal of Physical Chemistry B 103.11, 1991-1994.
  5. Cole R.L. and F.O. Bellinger, 1982, Thermally stratified tanks, ASHRAE Transactions 88, 1005-1017.
  6. Cotter M.A. and M.E. Charles, 1993, Transient cooling of petroleum by natural convection in cylindrical storage tanks-II. Effect of heat transfer coefficient, aspect ratio, and temperature-dependent viscosity, Int J Heat and Mass Transfer 36, 2175-2182. https://doi.org/10.1016/S0017-9310(05)80148-6
  7. Eames P.C. and B. Norton, 1998, The effect of tank geometry on thermally stratified sensible heat storage subject to low Reynolds number flows, Int J Heat and Mass Transfer 41, 2131-2142. https://doi.org/10.1016/S0017-9310(97)00349-9
  8. Hahne E. and Y. Chen, 1998, Numerical study of flow and heat transfer characteristics in hot water stores, Solar Energy 64, 9-18. https://doi.org/10.1016/S0038-092X(98)00051-6
  9. Hariharan K., K. Badrinarayana, S.S. Murthy and M.V. Murthy, 1991, Temperature stratification in hot-water storage tanks, Energy 16, 977-982. https://doi.org/10.1016/0360-5442(91)90057-S
  10. Ismail K.A.R, J.F.B. Leal and M.A. Zanardi, 1997, Models of liquid storage tanks, Int J Energy Research 22, 805-815. https://doi.org/10.1016/S0360-5442(96)00172-7
  11. Johari G.P., A. Hallbrucker and E. Mayer, 1996, Two calorimetrically distinct states of liquid water below 150 Kelvin, Science 273.5271, 90-92. https://doi.org/10.1126/science.273.5271.90
  12. Joo H.J., J.B. Jung and H.Y. Kwak, 2008, Numerical study on thermal stratification of the aspect ratio of solar thermal storage tank, Proceedings of the Korean Solar Energy Society (2008) Fall Conference, 178-183.
  13. KDHC(Korea District Heating Corporation), 2013, Simulator for estimating heating cost, http://www.kdhc. co.kr [Accessed February 26, 2013)].
  14. KIGAM (Korea Institute of Geoscience and Mineral Resources), 2012, Development of core technology for underground thermal energy storage in rock cavern, Research report GP2011-003-2012(1) Part. III, Ministry of Knowledge Economy, Seoul.
  15. KMA (Korea Meteorological Administration), 2011, Climatological normals of Korea (1980-2010), KMA, Seoul.
  16. Lide D.R., 1990, CRC handbook of chemistry and physics, CRC Press, Florida.
  17. Matrawy K.K., I. Farkas and J. Buzás, 1996, Optimum selection of the aspect ratio of solar tank, Proceedings of EuroSun'96, Freiberg, Germany, 251-255.
  18. Nelson J.E.B., A.R. Balakrishnan and S.S. Murthy, 1999, Parametric study on thermally stratified chilled water storage systems, Applied Thermal Engineering 19, 89-115. https://doi.org/10.1016/S1359-4311(98)00014-3
  19. Park D., H.M. Kim, D.W. Ryu, B.H. Choi, C. Sunwoo, and K.C. Han, 2012, Technologies of underground thermal energy storage (UTES) and Swedish case for hot water, Tunnel & Underground Space 22.1, 1-11. https://doi.org/10.7474/TUS.2012.22.1.001
  20. Park D., D. Ryu, B.H. Choi, C. Sunwoo and K.C. Han, 2013, Mechanical stability analysis to determine the optimum aspect ratio of rock caverns for thermal energy storage, Tunnel & Underground Space 23.2, 150-159. https://doi.org/10.7474/TUS.2013.23.2.150
  21. Shyu R.J., J.Y. Lin and L.J. Fang, 1989, Thermal analysis of stratified storage tanks, ASME Journal of Solar Energy Engineering 111.1, 54-61. https://doi.org/10.1115/1.3268287
  22. Song Y., 2008, Discussion on assessment and competitiveness of the geothermal resources, Journal of the Korean Society for Geosystem 45.4, 293-304.
  23. Takakura T., 1989, Technical models of the greenhouse environment, Acta Horticulture 248, 49-54.
  24. XYdatasource.com, 2012, Liquid thermal conductivity of water vs. temperature, http://www.xydatasource.com/xyshowdatasetpage. php?datasetcode=8888&dsid=109, accessed on March 30, 2012.

Cited by

  1. Thermal Performance Analysis of Multiple Thermal Energy Storage (TES) Caverns with Different Separation Distances Using Computational Fluid Dynamics vol.24, pp.3, 2014, https://doi.org/10.7474/TUS.2014.24.3.201
  2. Stability Analysis of Multiple Thermal Energy Storage Caverns Using a Coupled Thermal-Mechanical Model vol.24, pp.4, 2014, https://doi.org/10.7474/TUS.2014.24.4.297
  3. Guidelines for Designing the Shape and Layout of Thermal Energy Storage (TES) Rock Caverns vol.25, pp.2, 2015, https://doi.org/10.7474/TUS.2015.25.2.115