DOI QR코드

DOI QR Code

A Study on the Temperature Distribution of Rock Mass at KAERI Underground Research Tunnel: Verification on the Result of Borehole Heater Test

지하처분연구시설(KURT) 내 암반의 온도 분포에 관한 연구 : 시추공히터시험 결과의 검증

  • 윤찬훈 (한국원자력연구원 방사성폐기물 처분연구부) ;
  • 최영철 (한국원자력연구원 방사성폐기물 처분연구부) ;
  • 권상기 (인하대학교 에너지자원공학과) ;
  • 최희주 (한국원자력연구원 방사성폐기물 처분연구부)
  • Received : 2013.07.23
  • Accepted : 2013.08.20
  • Published : 2013.08.31

Abstract

In this study, the thermal analysis is carried out for a result of borehole heater test using ABAQUS ver 6.10 based on finite element analysis code. Thermal-mechanical rock properties as determined by laboratory tests before the in situ test and characteristics of the atmosphere at the test section are used as the initial condition. When comparing the results of the in situ test and thermal analysis, the temperature of C3 observation hole that is 0.9 m away from the heater showed very similar patterns and figures (about $1.3^{\circ}C$ difference). But the results of the A and B observation hole showed a significant difference around $15^{\circ}C{\sim}20^{\circ}C$. To find the reason for these results, the over-coring is carried out for the A1 and B1 observation holes. As a result of checking the excavated rock core with the naked eye, there is no problem on the number and position of the sensor as the test plan. However the state of cement injection in the observation hole is poor.

본 연구에서는 시추공히터시험의 실측 결과를 FEM 해석코드인 ABAQUS ver 6.10을 이용하여 열 해석을 수행하였다. 현장시험 전 암석 코아에 대한 실내 실험을 통해 결정된 열, 역학적 암반물성과 실험구간 내 대기특성을 해석 초기조건으로 입력하였다. 현장시험과 열 해석의 결과를 비교했을 때, 히터로부터 0.9 m 이격된 C3 관측공의 온도는 상당히 유사한 패턴과 수치(약 $1.3^{\circ}C$ 차이)를 보였으나, A와 B 관측공의 현장시험 결과와는 최대 $15^{\circ}C{\sim}20^{\circ}C$가량의 큰 차이를 나타냈다. 이러한 결과의 이유를 찾고자 A1과 B1 관측공을 대상으로 over-coring을 실시하였다. 육안으로 시추된 코어를 확인한 결과, 센서의 위치, 개수는 문제가 없었지만, 관측공내 시멘트의 주입 상태가 불량하였다.

Keywords

References

  1. Akesson, M., 2012, Temperature buffer test final report, Clay Technology AB, TR-12-04.
  2. Alonsol, E. E., Springman, S. M. and Ng, C. W. W., 2008, Monitoring large-scale tests for nuclear waste disposal, Geotechnical and Geological Engineering, Vol. 26, pp. 817-826. https://doi.org/10.1007/s10706-008-9195-2
  3. Cho, W. J., Kwon, S. and Choi, J. W., 2008, Thermal conductivity of granite from the KAERI underground research tunnel site, Tunnel and underground space, Vol. 18, No. 3, pp. 219-225.
  4. Cho, W. J., Park, J. H., and Kwon, S., 2004, Basic design of the small scale underground research, KAERI/TR -2769.
  5. Choi, H. J., Kim, I. Y., Lee, J. Y. and Kim, H. A., 2013, Thermal analysis of a horizontal disposal system for high-level radioactive waste, Tunnel and underground space, Vol. 23, No. 2, pp. 141-149. https://doi.org/10.7474/TUS.2013.23.2.141
  6. Kwon., S. and Cho, W. J., 2009, 지하처분연구시설 주변의 열,수리,역학적 초기조건, KAERI/TR-3796/2009.
  7. Kwon, S., Kim, J. S. and Park, S. H., 2012, KURT 시추 공히터시험에 대한 열-역학적 복합거동 해석, KAERI/ CM-1766/20121.
  8. Kwon, S., Lee, C. S., Yoon, C. H., Jeon, S. W., and Cho, W. J., 2011, Borehole heater test at KAERI underground research tunnel, Tunnel and underground space, Vol. 21, No. 3, pp. 225-234.
  9. Kwon, S., Lee, C. S., and Cho, W. J., 2012, Investigation of the thermal behavior of crystalline rock mass using an in situ borehole heater test, ARMS7 - 7th Asian Rock Mechanics Symposium, Seoul, South Korea.
  10. Lee, C. S., 2012, Characterization of thermal-mechanical behavior of rock mass in the excavation damaged zone at KURT, PhD thesis, Seoul National University.
  11. Lee, J. W. and Cho, W. J., 2007, Thermal-hydromechanical behaviors in the engineered barrier of a HLW repository: engineering-scale validation test, Tunnel and underground space, Vol. 17, No. 6, pp. 464-474.
  12. Lee, J. W., Cho, W. J. and Choi, J. W., 2008, The surface mock-up KENTEX: on the thermal-hydro-mechanical behaviors in the buffer of a Korean HLW repository, International Conference Underground Disposal Unit Design & Emplacement Processes for a Deep Geology Repository.
  13. Park, J. H., Kuh, J. E., Kwon, S. and Kang, C. H., 2000, Thermal analysis of high level radioactive waste repository using a large model, Journal of the Korean Nuclear Society, Vol. 32, No. 3, pp.244-253.
  14. Rutqvist, J. and Tsang, C.-F., 2003, A fully coupled three-dimensional THM analysis of the FEBEX in situ test with the ROCMAS code: prediction of THM behavior in a bentonite barrier, 2003, Earnest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab), Earth Sciences Division, Berkeley, USA.
  15. Sena, C., Salas, J. and Arcos, D, 2010, Thermo-hydrogeo- chemical modelling of the bentonite buffer LOT A2 experiment, TR-10-65.
  16. Wileveau, Y. and Rothfuchs, T., 2007, THM behavior of host rock (HE-D) experiment: study of thermal effects on Opalinus clay, TR 2006-01.
  17. Yoon, C. H., Kwon, S. and Kim, J., 2009, Experimental study on the determination of heat transfer coefficient for the KURT, Tunnel and underground space, Vol. 19, No. 6, pp. 507-516.
  18. Yoon, C. H., Kim, J. S., Lee, C. S., Cho, W. J, Choi, H. J, Choi J. W., 2012, KURT 시추공 히터시험에 관한 열적거동 결과 분석, KAERI/TR-4694/2012.

Cited by

  1. In situ stress estimation in KURT site vol.53, pp.5, 2017, https://doi.org/10.14770/jgsk.2017.53.5.689