References
- The Japan Academy ed., A History of Japanese Mathematics before Meiji Period, vol. 2, Tokyo: Linchuan Bookstore, 1979, 148-154. 日本学士院编, <明治前日本数学史(2)>, 东京:临川书店,1979, 148-154.
- Feng Lisheng, "On the Structural Principle of the 3-power Interpolation in Shoushi Calendar in View of Seki's Leicai zhaocha fa", Studies in the History of Natural Sciences, 20(2) (2001), 132-142. 冯立升, "从关孝和的累裁招差法看<<授时历>>平立定三差法之原", 自然科学史研究20(2) (2001), 132-142.
- Xu Zelin, "Jananese Mathemticians'Inheritance and Development to the Methord of Interpolation in Old China", Li Di ed., Studies in the History of Mathematics, vol. 7, Hohhot, Inner Mongolia University Press,2001, 124-133. 徐泽林. 和算家对招差法的 继承与发展, 李迪, 数学史研究第七辑, 呼和浩特: 内蒙古大学出版社,2001,124-133.
- China Bookstore ed., Collected Monographs on Astronomy, Music and Calendars from the Dynastic Histories, vol. 10, Beijing: China Bookstore,1976,3595-3620. 中华书局编, <历代天文律历等志汇编(10)>, 北京: 中华书局,1976,3595-3620.
- Huang Zongxi, A Study on the Shoushi Calendar, 1923. (清) 黄宗羲, <授时历故>, 嘉业堂从书本, 1923.
- Li Yan, A Study on Interpolations of Chinese Mathematicians, Beijing: Science Press, 1957,62-73. 李俨, <中算家的内插法研究>, 北京: 科学出版社,1957,62-73.
- Qian Baocong, A History of Chinese Mathematics, Beijing: Science Press,1964,189-197. 钱宝琮, <中国数学史>, 北京:科学出版社,1964,189-197.
- Qu Anjing, Ji Zhigang & Wang Rongbin, Explorations on Chinese Mathematical Astronomy, Xian: Northwest University Press,1994,185-200,309-321. 曲安京,纪志刚,王荣 彬, <中国古代数理天文学探析>, 西安: 西北大学出版社,1994,185-200,309-321.
- Qu Anjing, "The Cubic Interpolation in Chinese Mathematical Astronomy", Studies in the History of Natural Sciences 15(2) (1996), 131-143. 曲安京, "中国古代历法中的三 次内插法", 自然科学史研究15(2) (1996), 131-143.
- Huang Ding, An Outline of a Glimpse of Astronomical Achievements, vol. 12, Taipei: Photocopy of Laogu Cutural Campany,1984,163. (清) 黄鼎, <天文大成管窥辑要(卷12)>, 云林阁刊本, 1653(顺治十年), 台北: 老古文化事业公司影印本,1984, 163.
- Hirayama, et al. ed., Complete Works of Seki Takakazu—General Algorithms, Osaka: Osaka Education Book Publishing House,1974,273-282. 平山諦等编, 関孝和全集� 括要算法, 大阪:大阪教育图书株式会社,1974,273-282.
- Hirayama, et al. ed., Complete Works of Seki Takakazu—Collected Books by Seki, Osaka: Osaka Education Book Publishing House,1974,423-464. 平山諦等编, <関孝和 全集 関訂書>, 大阪: 大阪教育图书株式会社,1974,423-464.
- Yoshio Mikami, "Seki Takakazu's Achievements, and Comparison and Relationship with the Algorithm of China and Yanbe of Keihan Area", Japan Journal (20)1933, 554-555. 三上義夫, "関孝和の業績と京坂の山家並びに支那の算法との関係及び比 較", 東洋学報20 (1933), 554-555.
- Tsuchikura, et al. ed., Invitation to History of Mathematics in East Asia—Collected Works of Fujiwara Matsusaburo on the History of Mathematics, Sendai: Tohoku University Publishing House,2007,57-72. 土倉保等编, <東洋数学史への招待�藤原松三郎数学 史論文集>, 仙台: 東北大学出版会,2007,57-72.
- Takenouchi Osamu, "The Tuoji Methord in Seki's General Algorithm vol.1, 1583, Study of the History of Mathematics", vol. 1546, Kyoto: RIMS of Kyoto University, 2007,157-162. 竹之内修, "関孝和《括要算法…卷元》垜積術", 数理解析研究所講究録1546, 京都: 京都大学数理解析研究所,2007,157-162.
- Ogawa Tsukane, "The Bernoulli Numbers Discovered by Seki Takakazu", 1583, Study of the History of Mathematics, vol. 1583, Kyoto: RIMS of Kyoto University, 2008,1-18. 小川束, "関孝和によるベルヌィ数の發見", 数理解析研究所講究録(1583), 京都: 京都大学数理解析研究所,2008,1-18.
- Wu Wentsun, Mathematics Mechanization, Beijing: Science Press & Dorrecht: Kluwer Academic Publishers, 2000, 1-66.
Cited by
- Indefinite Problem in Wasan vol.26, pp.5_6, 2013, https://doi.org/10.14477/jhm.2013.26.5_6.329