참고문헌
- Korean Diabetes Association, Health Insurance Review & Assessment Service. Report of Task Force Team For Basic Statistical Study of Korean Diabetes Mellitus: Diabetes in Korea 2007. 1st ed. Goldfishery, Seoul, Korea (2008)
- Levetan C. Oral antidiabetic agents in type 2 diabetes. Curr. Med. Res. Opin. 23: 945-952 (2007) https://doi.org/10.1185/030079907X178766
- Krentz AJ, Bailey CJ. Oral antidiabetic agents: current role in type 2 diabetes mellitus. Drugs 63: 385-411 (2005)
- Clissold SP. Edwards C. Acarbose: a preliminary review its pharmacodynamic and pharmacokinetic properties and therapeutic potential. Drugs 35: 214-243 (1988)
- Diamant M, Heine RJ. Thiazolidinediones in type 2 diabetes mellitus: current clinical evidence. Drugs 63: 1373-1405 (2003) https://doi.org/10.2165/00003495-200363130-00004
- Stumvoll M, Nurjhan N, Perriello G, Dailey G, Gerich JEN. Metabolic effects of metformin in non-insulin-dependent diabetes mellitus. New Engl. J. Med. 333: 550-554 (1995) https://doi.org/10.1056/NEJM199508313330903
- Barnett D, Craig JG, Robinson DS, Rogers MP. Effect of clofibrate on glucose tolerance in maturity onset diabetes. Brit. J. Clin. Pharmaco. 4: 455-458 (1977) https://doi.org/10.1111/j.1365-2125.1977.tb00761.x
- Murphy EJ, Davern TJ, Shakil AO, Shick L, Masharani U, Chow H, Freise C. Lee WM, Bass NM. Troglitazone-induced fulminant hepatic failure. Acute Liver Failure Study Group. Digest. Dis. Sci. 45: 549-553 (2000) https://doi.org/10.1023/A:1005405526283
- Han HK, Je HS, Kim GH. Effect of Cirsium japonicum powder on plasma glucose and lipid level in streptozotocin induced diabetic rats. Korean J. Food Sci. Technol. 42: 343-349 (2010)
- Kun SN, Kang SJ. Effect of black ginseng (9 times steaming ginseng) on hypoglycemic action and changes in the composition of ginsenosides on the steaming process. Korean J. Food Sci. Technol. 41: 77-81 (2009)
- Iizuka Y, Sakurai E, Tanaka Y. Antidiabetic effect of folium mori in GK rats. Yakugaku zasshi 121: 365-369 (2001) https://doi.org/10.1248/yakushi.121.365
- Oh WK, Lee CH, Lee MS, Bae EY, Sohn CB, Oh H, Kim BY, Ahn JS. Antidiabetic effects of extracts from Psidium guajava. J. Ethnopharmacol. 96: 411-415 (2005) https://doi.org/10.1016/j.jep.2004.09.041
- Bae EA, Kim NY, Han MJ, Choo MK, Kim DH. Transformation of ginsenosides to compounds K (IH-901) by lactic acid bacteria of human intestine. J. Microbiol. Biotechnol. 13: 9-14 (2003)
- Kusznierewicz B, Smiechowska A, Bartoszek A, Namiesnik J. The effect of heating and fermenting on antioxidant properties of white cabbage. Food Chem. 108: 853-861 (2008) https://doi.org/10.1016/j.foodchem.2007.11.049
- Han CC, Wei H, Guo J. Anti-inflammatory effects of fermented and non-fermented sophora flavescens: a comparative study. BMC Complem. Altern. M. 11: 100-106 (2011) https://doi.org/10.1186/1472-6882-11-100
- Cabrera C, Artacho R, Gimenez R. Beneficial effects of green tea-a review. J. Am. Coll. Nutr. 25: 79-99 (2006) https://doi.org/10.1080/07315724.2006.10719518
- Xu J, Zhu SG, Yang FM, Cheg LC, Hu Y, Pan GX, Hu QH. The influence of selenium on the antioxidant activity of green tea. J. Sci. Food Agr. 83: 451-455 (2003) https://doi.org/10.1002/jsfa.1405
- Yee YK. Koo MW. Anti-helicobacter pylori activity of Chinese tea: in vitro study. Aliment. Pharm. Ther. 14: 635-638 (2000) https://doi.org/10.1046/j.1365-2036.2000.00747.x
- Sabu MC, Smitha K, Kuttan R. Anti-diabetic activity of green tea polyphenols and their role in reducing oxidative stress in experimental diabetes. J. Ethnopharmacol. 83: 109-116 (2002) https://doi.org/10.1016/S0378-8741(02)00217-9
- Zheng G, Sayama K, Okubo T, Juneja LR, Oguni I. Anti-obesity effects of three major components of green tea, catechins, caffeine and theanine in mice. In Vivo 18:55-62 (2004)
- Yang TT, Koo MW. Chinese green tea lowers cholesterol level through an increase in fecal lipid excretion. Life Sci. 66: 411-423 (2000)
- Feng Q, Torii Y, Uchida K, Nakamura Y, Hara Y, Osawa T. Black tea polyphenols, theaflavins, prevent cellular DNA damage by inhibiting oxidative stress and suppressing cytochrome P450 IAI in cell culture. J. Agr. Food Chem. 50: 213-220 (2002) https://doi.org/10.1021/jf010875c
- Kuo KL, Weng MS, Chiang CT, Tsai YJ, Lin-Shiau SY, Lin JK. Comparative studies on the hypolipidemic and growth effects of oolong, black, pu-erh, and green tea leaves in rats. J. Agr. Food Chem. 53: 480-489 (2005) https://doi.org/10.1021/jf049375k
- Gomes A, Vedasiromoni JR, Das M, Sharma RM, Ganguly DK. Anti-hyperglycemic effect of black tea (Camellia sinensis) in rat. J. Ethnopharmacol. 45: 223-226 (1995) https://doi.org/10.1016/0378-8741(95)01223-Z
- Lee SI, Lee YK, Kim SD, Yang SH, Suh JW. Dietary effects of post-fermented green tea by Monascus pilosus on the body weight serum lipid profiles and the activities of hepatic antioxidative enzymes in mouse fed a high fat diet. J. Appl. Biol. Chem. 55: 85-94 (2012) https://doi.org/10.3839/jabc.2011.064
- Chen YS, Liu BL, Chang YN. Bioactivities and sensory evaluation of pu-erh teas made from three tea leaves in an improved pile fermentation process. J. Biosci. Bioeng. 109: 557-563 (2010) https://doi.org/10.1016/j.jbiosc.2009.11.004
- Huang HC, Lin JK. Pu-erh tea, green tea, and black tea suppresses hyperlipidemia, hyperleptinemia and fatty acid synthase through activating AMPK in rats fed a high-fructose diet. Food Funct. 3: 170-177 (2012) https://doi.org/10.1039/c1fo10157a
-
Huang Q, Chen S, Chen H, Wang Y, Wang Y, Hochstetter D, Xu P. Studies on the bioactivity of aqueous extract of pu-erh tea and its fraction: in vitro antioxidant activity and
${\alpha}$ -glycosidase inhibitory property, and their effect on postprandial hyperglycemia in diabetic mice. Food Chem. Toxicol. 53: 75-83 (2013) https://doi.org/10.1016/j.fct.2012.11.039 - Park JH, Kim Y, Kim SH. Green tea extract (Camellia sinensis) Fermented by Lactobacillus fermentum attenuated alcohol-induced liver damage. Biosci. Biotech. Bioch. 76: 2294-2230 (2012) https://doi.org/10.1271/bbb.120598
- Miura T, Koike T, Ishida T. Antidiabetic activity of green tea (Thea sinensis L). in genetically type 2 diabetic mice. J. Health Sci. 51: 708-710 (2005) https://doi.org/10.1248/jhs.51.708
- Lee BR, Koh KO, Park PS. Anti-hyperglycemic effects of green tea extract on alloxan-induced diabetic and OLETF rats. J. Korean Soc. Food Sci. Nutr. 36: 696-702 (2007) https://doi.org/10.3746/jkfn.2007.36.6.696
- Kumar B, Gupta SK, Nag TC, Srivastava S, Saxena R. Green tea prevents hyperglycemia-induced retinal oxidative stress and inflammation in streptozotocin-induced diabetic rats. Ophthalmic Res. 47: 103-108 (2012) https://doi.org/10.1159/000330051
-
Kamiyama O, Sanae F, Ikeda K, Higashi Y, Minami Y, Asano N, Adachi I, Kato A. In vitro inhibition of
$\alpha$ -glucosidases and glycogen phosphorylase by catechin gallates in green tea. Food Chem. 122: 1061-1066 (2010) https://doi.org/10.1016/j.foodchem.2010.03.075 - Anderson RA, Polansky MM. Tea enhances insulin activity. J. Agr. Food Chem. 50:7182-7186 (2002) https://doi.org/10.1021/jf020514c
- Cameron AR, Anton S, Melville L, Houston NP, Dayal S, McDougall GJ, Stewart D, Rena G. Black tea polyphenols mimic insulin/insulin-like growth factor-1 signalling to the longevity factor FOXO1a. Aging Cell 7: 69-77 (2008) https://doi.org/10.1111/j.1474-9726.2007.00353.x
- Ma X, Tsuda S, Yang X, Gu N, Tanabe H, Oshima R, Matsuchita T, Egawa T, Dong AJ, Zhu BW, Hayashi T. Pu-erh tea hotwater extract activates Akt and induced insulin-independent glucose transport in rat skeletal muscle. J. Med. Food 16: 259-262 (2013) https://doi.org/10.1089/jmf.2012.2520
- Stratton IM, Adler AI, Neil HAW, Matthews DR, Manley SE, Cull CA, Hadden D, Turner RC, Holman RR. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. Brit. Med. J. 321: 405-412 (2000) https://doi.org/10.1136/bmj.321.7258.405
- Shanik MH, Xu Y, Skrha J, Dankner R, Zick Y, Roth J. Insulin resistance and hyperinsulinemia. Diabetes Care 31: S262-S268 (2008) https://doi.org/10.2337/dc08-s264
- Srinivasan K, Ramarao P. Animal models in type 2 diabetes research: An overview. Indian J. Med. Res. 125: 451-472 (2007)
- Mattews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentration in man.Diabetologia 28: 412-419 (1985) https://doi.org/10.1007/BF00280883
- Krauss RM. Lipids and lipoproteins in patients with type 2 diabetes. Diabetes Care 27: 1496-1504 (2004) https://doi.org/10.2337/diacare.27.6.1496
- Avramoglu RK, Basciano H, Adeli K. Lipid and lipoprotein dysregulation in insulin resistant states. Clin. Chim. Acta 368: 1-19 (2006) https://doi.org/10.1016/j.cca.2005.12.026
- Kolovou GD, Anagnostopoulou KK, Cokkinos DV. Pathophysiology of dyslipidaemia in the metabolic syndrome. Postgrad. Med. J. 81: 358-366 (2005) https://doi.org/10.1136/pgmj.2004.025601
- Hirano T. Lipoprotein abnormalities in diabetic nephropathy. Kidney Int. 56 (suppl.) 71: S22-S24 (1999)
- Castelli WP, Garrison RJ, Wilson PW, Abbott RD, Kalousdian S, Kannel WB. Incidence of coronary heart disease and lipoprotein cholesterol levels. The Framingham study. J. Am. Med. Assoc. 256: 2835-2838 (1986) https://doi.org/10.1001/jama.1986.03380200073024
- de Santana MB, Madarino MG, Cardoso JR, Dichi I, Dichi JB, Camargo AEI, Fabris BA, Rodrigues RJ, Fatel ECS, Nixdorf SL, Simao ANC, Cecchini R, Barbosa DS. Association between soy and green tea (Camellia sinensis) diminishes hypercholesterolemia and increases total plasma antioxidant potential in dyslipidemic subjects. Nutrition 24: 562-568 (2008) https://doi.org/10.1016/j.nut.2008.02.007
- Unno T, Tago M, Suzuki Y, Nozawa A, Sagesaka YM, Kakuda T, Egawa K, Kondo K. Effect of tea cathechins on postprandial plasma lipid responses in human subjects. Brit. J. Nutr. 27: 363- 370 (2008)
- Tsao TS, Burcelin R, Charron MJ. Regulation of hexokinase II gene expression by glucose flux in skeletal muscle. J. Biol. Chem. 271: 14959-14963 (1996) https://doi.org/10.1074/jbc.271.25.14959
- Postic C, Leturque A, Rencurel F, Printz RL, Forest C, Granner DK, Girard J. The effects of hyperinsulinemia and hyperglycemia on GLUT4 and hexokinase II mRNA and protein in rat skeletal muscle and adipose tissue. Diabetes 42: 922-929 (1993) https://doi.org/10.2337/diab.42.6.922
- Frank SK, Fromm HJ. Effect of streptozotocin-induced diabetes and insulin treatment on the synthesis of hexokinase II in the skeletal muscle of the rat. Arch. Biochem. Biophys. 249: 61-69 (1986) https://doi.org/10.1016/0003-9861(86)90560-6
- Braithwaite SS, Palazuk B, Colca JR, Edwards CW, Hofmann C. Reduced expression of hexokinase II in insulin-resistant diabetes. Diabetes 44: 43-48 (1995) https://doi.org/10.2337/diab.44.1.43
- Vestergaard H, Bjorbaek C, Hansen T, Larsen FS. Granner DK, Pedersen O. Impaired activity and gene expression of hexokinase II in muscle from non-insulin-dependent diabetes mellitus patients. J. Clin. Invest. 96: 2639-2645 (1995) https://doi.org/10.1172/JCI118329
- Hart AW, Baeza N, Apelqvist A, Edlund H. Attenuation of FGF signalling in mouse beta-cells leads to diabetes. Nature 408: 864- 868 (2000) https://doi.org/10.1038/35048589
- Matsuda Y, Saegusa H, Zong S, Noda T, Tanabe T. Mice lacking Ca(v)2.3 (alpha1E) calcium channel exhibit hyperglycemia. Biochem. Bioph. Res. Co. 289: 791-795 (2001) https://doi.org/10.1006/bbrc.2001.6051
- Pereverzev A, Mikhna M, Vajna R, Gissel C, Henry M, Weiergraber M, Hescheler J, Smyth N, Schneider T. Disturbances in glucose-tolerance, insulin-release, and stress-induced hyperglycemia upon disruption of the Ca(v)2.3 (alpha 1E) subunit of voltage- gated Ca(2+) channels. Mol. Endocrinol. 16: 884-895 (2002) https://doi.org/10.1210/me.16.4.884
피인용 문헌
- Anti-Diabetic Effects of Mori Folium Extract on High-Fat Diet and Streptozotocin-Induced Type II Diabetes Mellitus in Mice vol.30, pp.1, 2015, https://doi.org/10.6116/kjh.2015.30.1.1.
- The Efficacy of Lowering Blood Glucose Levels Using the Extracts of Fermented Bitter Melon in the Diabetic Mice vol.58, pp.3, 2015, https://doi.org/10.3839/jabc.2015.041
- Anti-diabetic effect of the mixture of mulberry leaf and green tea powder in rats with streptozotocin-induced diabetes vol.21, pp.4, 2014, https://doi.org/10.11002/kjfp.2014.21.4.549
- Postprandial hypoglycemic effects of mulberry twig and root barkin vivoandin vitro vol.49, pp.1, 2016, https://doi.org/10.4163/jnh.2016.49.1.18
- Protective role of green tea on diabetic nephropathy���A review vol.2, pp.1, 2016, https://doi.org/10.1080/23312025.2016.1248166