Evaluation of Renal Oxygenation in Normal Korean Volunteers Using 3.0 T Blood Oxygen Level-Dependent MRI

3.0 T 혈중산소치의존 자기공명영상을 이용한 정상한국인에서의 신장 산소공급의 평가

  • Hwang, Sung Il (Department of Radiology, Seoul National University Bundang Hospital) ;
  • Lee, Hak Jong (Department of Radiology, Seoul National University Bundang Hospital) ;
  • Chin, Ho Jun (Department of Internal Medicine, Seoul National University Bundang Hospital) ;
  • Chae, Dong-Wan (Department of Internal Medicine, Seoul National University Bundang Hospital) ;
  • Na, Ki Young (Department of Internal Medicine, Seoul National University Bundang Hospital)
  • Received : 2012.10.25
  • Accepted : 2013.01.30
  • Published : 2013.04.30

Abstract

Purpose : Renal blood oxygen level-dependent (BOLD) MRI has been used in the evaluation of renal oxygenation. We tried to provide the normal $R2^*$ value of the human kidney with 3.0 T, and evaluated the differences in $R2^*$ values according to gender and location. Materials and Methods: Twenty-four healthy volunteers underwent BOLD MRI at 3.0 T. Multi gradient echo-echo planar imaging sequence with seventeen echoes was used. After generation of the $T2^*$ map, the $R2^*$ was calculated. The statistical differences in $R2^*$ values between the cortex and medulla, males and females, and the right and left kidney were analyzed. The regional differences of $R2^*$ within the both kidneys were evaluated respectively. Results: BOLD MRI was successful in all participants. No gross artifact interfered with $R2^*$ measurement. The mean $R2^*$ at 3.0 T was $17.1{\pm}2.60s^{-1}$ in the cortex and $27.7{\pm}4.83s^{-1}$ in the medulla (p < 0.001). The $R2^*$ value in the medulla was significantly higher in the male than female volunteers (p = 0.025). There were no statistical differences of $R2^*$ according to the side and location in the kidney (p = 0.197). Conclusion: Renal BOLD MRI can be efficiently performed with 3.0 T MRI. Renal medullary hypoxia is present in normal volunteers. Our results may be used as reference values in the evaluation of pathologic conditions using BOLD MRI.

목적: 신장 혈중산소치의존 자기공명영상은 신장 산소공급의 평가로 사용되고 있다. 3T 자기공명영상에서 신장의 정상 $R2^*$ 값을 재고, 성별과 위치에 따른 $R2^*$ 값의 차이를 평가하고자 하였다. 대상과 방법: 24명의 건강한 자원자를 대상으로 3.0T 에서 혈중산소치의존 자기공명영상을 시행하였다. $T2^*$ 맵을 생성한 다음에 $R2^*$ 값을 계산하였고, 신피질과 신수질, 남녀 그리고 좌우 신장에 대한 $R2^*$값의 통계적 차이를 평가하였다. 양측 신장 내에서도 위치에 따른 $R2^*$값의 차이도 평가하였다. 결과: 모든 대상에서 혈중산소치의존 자기공명영상은 성공적이었으며, $R2^*$의 측정에 방해되는 인공물은 없었다. 3.0T에서의 평균 $R2^*$는 피질에서 $17.1{\pm}2.60s^{-1}$ 였으며 수질에서는 $27.7{\pm}4.83s^{-1}$ 였다 (p < 0.001). 남자의 수질의 $R2^*$ 값이 여자보다 통계적으로 유의하게 높았으나 (p=0.025), 좌우신이나 신장 내에서의 $R2^*$값의 통계적 차이는 없었다 (p=0.197). 결론: 3.0T에서 신장 혈중산소치의존 자기공명영상은 효과적으로 시행될 수 있었다. 정상인에서 상대적인 신수질의 저산소증이 존재하였고, 이 결과는 병리적인 환경에서 신장 평가에서의 기준치로 사용될 수 있을 것으로 생각된다.

Keywords

References

  1. Kone BC. A 'BOLD' new approach to renal oxygen economy. Circulation 1996;94:3067-3068 https://doi.org/10.1161/01.CIR.94.12.3067
  2. Epstein FH, Agmon Y, Brezis M. Physiology of renal hypoxia. Ann N Y Acad Sci 1994;718:72-81; discussion 81-72
  3. Heyman SN, Brezis M, Reubinoff CA, et al. Acute renal failure with selective medullary injury in the rat. J Clin Invest 1988;82:401-412 https://doi.org/10.1172/JCI113612
  4. Cowley AW, Jr., Mattson DL, Lu S, Roman RJ. The renal medulla and hypertension. Hypertension 1995;25:663-673 https://doi.org/10.1161/01.HYP.25.4.663
  5. Ries M, Basseau F, Tyndal B, et al. Renal diffusion and bold MRI in experimental diabetic nephropathy. Blood oxygen leveldependent. J Magn Reson Imaging 2003;17:104-113 https://doi.org/10.1002/jmri.10224
  6. Ogawa S, Lee TM, Kay AR, Tank DW. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A 1990;87:9868-9872 https://doi.org/10.1073/pnas.87.24.9868
  7. Prasad PV, Edelman RR, Epstein FH. Noninvasive evaluation of intrarenal oxygenation with bold MRI. Circulation 1996;94:3271-3275 https://doi.org/10.1161/01.CIR.94.12.3271
  8. Ogawa S, Menon RS, Tank DW, et al. Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model. Biophys J 1993;64:803-812 https://doi.org/10.1016/S0006-3495(93)81441-3
  9. Li LP, Vu AT, Li BS, Dunkle E, Prasad PV. Evaluation of intrarenal oxygenation by bold MRI at 3.0 T. J Magn Reson Imaging 2004;20:901-904 https://doi.org/10.1002/jmri.20176
  10. Tumkur S, Vu A, Li L, Prasad PV. Evaluation of intrarenal oxygenation at 3.0 T using 3-dimensional multiple gradientrecalled echo sequence. Invest Radiol 2006;41:181-184 https://doi.org/10.1097/01.rli.0000187166.43871.fb
  11. Prasad PV, Chen Q, Goldfarb JW, Epstein FH, Edelman RR. Breath-hold R2* mapping with a multiple gradient-recalled echo sequence: application to the evaluation of intrarenal oxygenation. J Magn Reson Imaging 1997;7:1163-1165 https://doi.org/10.1002/jmri.1880070633
  12. Prasad PV, Priatna A, Spokes K, Epstein FH. Changes in intrarenal oxygenation as evaluated by bold MRI in a rat kidney model for radiocontrast nephropathy. J Magn Reson Imaging 2001;13:744-747 https://doi.org/10.1002/jmri.1103
  13. Simon-Zoula SC, Hofmann L, et al. Non-invasive monitoring of renal oxygenation using bold-MRI: a reproducibility study. NMR Biomed 2006;19:84-89 https://doi.org/10.1002/nbm.1004
  14. Sadowski EA, Fain SB, Alford SK, et al. Assessment of acute renal transplant rejection with blood oxygen level-dependent MR imaging: initial experience. Radiology 2005;236:911-919 https://doi.org/10.1148/radiol.2363041080
  15. Li LP, Storey P, Pierchala L, Li W, Polzin J, Prasad PV. Evaluation of the reproducibility of intrarenal R2* and delta R2* measurements following administration of furosemide and during waterload. J Magn Reson Imaging 2004;19:610-616 https://doi.org/10.1002/jmri.20043
  16. Hofmann L, Simon-Zoula S, Nowak A, et al. Bold-MRI for the assessment of renal oxygenation in humans: acute effect of nephrotoxic xenobiotics. Kidney Int 2006;70:144-150 https://doi.org/10.1038/sj.ki.5000418
  17. Tumkur SM, Vu AT, Li LP, Pierchala L, Prasad PV. Evaluation of intra-renal oxygenation during water diuresis: a timeresolved study using bold MRI. Kidney Int 2006;70:139-143 https://doi.org/10.1038/sj.ki.5000347
  18. Prasad PV, Epstein FH. Changes in renal medullary PO2 during water diuresis as evaluated by blood oxygenation leveldependent magnetic resonance imaging: effects of aging and cyclooxygenase inhibition. Kidney Int 1999;55:294-298 https://doi.org/10.1046/j.1523-1755.1999.00237.x
  19. Pechere-Bertschi A, Maillard M, Stalder H, et al. Renal hemodynamic and tubular responses to salt in women using oral contraceptives. Kidney Int 2003;64:1374-1380 https://doi.org/10.1046/j.1523-1755.2003.00239.x
  20. Ji H, Pesce C, Zheng W, et al. Sex differences in renal injury and nitric oxide production in renal wrap hypertension. Am J Physiol Heart Circ Physiol 2005;288:H43-47 https://doi.org/10.1152/ajpheart.00630.2004
  21. Neugarten J, Acharya A, Silbiger SR. Effect of gender on the progression of nondiabetic renal disease: a meta-analysis. J Am Soc Nephrol 2000;11:319-329
  22. Cook CI, Yu BP. Iron accumulation in aging: modulation by dietary restriction. Mech Ageing Dev 1998;102:1-13 https://doi.org/10.1016/S0047-6374(98)00005-0
  23. Chandarana H, Lee VS. Renal functional MRI: are we ready for clinical application? AJR Am J Roentgenol 2009;192:1550-1557 https://doi.org/10.2214/AJR.09.2390