DOI QR코드

DOI QR Code

Stem cell maintenance in a different niche

  • Lim, Jeong Mook (WCU Biomodulation Program, Seoul National University) ;
  • Ahn, Ji Yeon (Department of Agricultural Biotechnology, Seoul National University) ;
  • Lee, Seung Tae (Department of Animal Biotechnology, College of Animal Life Science, Kangwon National University)
  • Received : 2013.04.11
  • Accepted : 2013.06.03
  • Published : 2013.06.30

Abstract

To overcome the difficulty of controlling stem cell fate and function in applications to regenerative medicine, a number of alternative approaches have been made. Recent reports demonstrate that a non-cellular niche modulating the biophysical microenvironment with chemical factors can support stem cell self-renewal. In our previous studies, early establishment was executed to optimize biophysical factors and it was subsequently found that the microgeometry of the extracellular matrix made huge differences in stem cell behavior and phenotype. We review here a three-dimensional, non-cellular niche designed to support stem cell self-renewal. The characteristics of stem cells under the designed system are further discussed.

Keywords

References

  1. Ding S, Schultz PG. A role for chemistry in stem cell biology. Nat Biotechnol 2004;22:833-40. https://doi.org/10.1038/nbt987
  2. Nava MM, Raimondi MT, Pietrabissa R. Controlling self-renewal and differentiation of stem cells via mechanical cues. J Biomed Biotechnol 2012;2012:797410.
  3. Guilak F, Cohen DM, Estes BT, Gimble JM, Liedtke W, Chen CS. Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell 2009;5:17-26. https://doi.org/10.1016/j.stem.2009.06.016
  4. Burdick JA, Vunjak-Novakovic G. Engineered microenvironments for controlled stem cell differentiation. Tissue Eng Part A 2009; 15:205-19. https://doi.org/10.1089/ten.tea.2008.0131
  5. Castillo AB, Jacobs CR. Mesenchymal stem cell mechanobiology. Curr Osteoporos Rep 2010;8:98-104. https://doi.org/10.1007/s11914-010-0015-2
  6. Hayashi Y, Furue MK, Okamoto T, Ohnuma K, Myoishi Y, Fukuhara Y, et al. Integrins regulate mouse embryonic stem cell self-renewal. Stem Cells 2007;25:3005-15. https://doi.org/10.1634/stemcells.2007-0103
  7. Reilly GC, Engler AJ. Intrinsic extracellular matrix properties regulate stem cell differentiation. J Biomech 2010;43:55-62. https://doi.org/10.1016/j.jbiomech.2009.09.009
  8. Watanabe S, Umehara H, Murayama K, Okabe M, Kimura T, Nakano T. Activation of Akt signaling is sufficient to maintain pluripotency in mouse and primate embryonic stem cells. Oncogene 2006;25:2697-707. https://doi.org/10.1038/sj.onc.1209307
  9. Alitalo K, Kuismanen E, Myllyla R, Kiistala U, Asko-Seljavaara S, Vaheri A. Extracellular matrix proteins of human epidermal keratinocytes and feeder 3T3 cells. J Cell Biol 1982;94:497-505. https://doi.org/10.1083/jcb.94.3.497
  10. Talbot NC, Sparks WO, Powell AM, Kahl S, Caperna TJ. Quantitative and semiquantitative immunoassay of growth factors and cytokines in the conditioned medium of STO and CF-1 mouse feeder cells. In Vitro Cell Dev Biol Anim 2012;48:1-11.
  11. Lei T, Jacob S, Ajil-Zaraa I, Dubuisson JB, Irion O, Jaconi M, et al. Xeno-free derivation and culture of human embryonic stem cells: current status, problems and challenges. Cell Res 2007;17:682-8. https://doi.org/10.1038/cr.2007.61
  12. Xu C, Inokuma MS, Denham J, Golds K, Kundu P, Gold JD, et al. Feeder-free growth of undifferentiated human embryonic stem cells. Nat Biotechnol 2001;19:971-4. https://doi.org/10.1038/nbt1001-971
  13. Richards M, Fong CY, Chan WK, Wong PC, Bongso A. Human feeders support prolonged undifferentiated growth of human inner cell masses and embryonic stem cells. Nat Biotechnol 2002; 20:933-6. https://doi.org/10.1038/nbt726
  14. Hovatta O, Mikkola M, Gertow K, Stromberg AM, Inzunza J, Hreinsson J, et al. A culture system using human foreskin fibroblasts as feeder cells allows production of human embryonic stem cells. Hum Reprod 2003;18:1404-9. https://doi.org/10.1093/humrep/deg290
  15. Richards M, Tan S, Fong CY, Biswas A, Chan WK, Bongso A. Comparative evaluation of various human feeders for prolonged undifferentiated growth of human embryonic stem cells. Stem Cells 2003;21:546-56. https://doi.org/10.1634/stemcells.21-5-546
  16. Cheng L, Hammond H, Ye Z, Zhan X, Dravid G. Human adult marrow cells support prolonged expansion of human embryonic stem cells in culture. Stem Cells 2003;21:131-42. https://doi.org/10.1634/stemcells.21-2-131
  17. Kim HS, Seol HW, Ahn HJ, Oh SK, Ku SY, Kim SH, et al. Human amniotic fluid cells support expansion culture of human embryonic stem cells. Korean J Fertil Steril 2004;31:261-72.
  18. Genbacev O, Krtolica A, Zdravkovic T, Brunette E, Powell S, Nath A, et al. Serum-free derivation of human embryonic stem cell lines on human placental fibroblast feeders. Fertil Steril 2005;83:1517-29. https://doi.org/10.1016/j.fertnstert.2005.01.086
  19. Wang Q, Fang ZF, Jin F, Lu Y, Gai H, Sheng HZ. Derivation and growing human embryonic stem cells on feeders derived from themselves. Stem Cells 2005;23:1221-7. https://doi.org/10.1634/stemcells.2004-0347
  20. Mallon BS, Park KY, Chen KG, Hamilton RS, McKay RD. Toward xeno- free culture of human embryonic stem cells. Int J Biochem Cell Biol 2006;38:1063-75. https://doi.org/10.1016/j.biocel.2005.12.014
  21. Tsai ZY, Singh S, Yu SL, Chou CH, Li SS. A feeder-free culture using autogeneic conditioned medium for undifferentiated growth of human embryonic stem cells: comparative expression profiles of mRNAs, microRNAs and proteins among different feeders and conditioned media. BMC Cell Biol 2010;11:76. https://doi.org/10.1186/1471-2121-11-76
  22. Amit M, Itskovitz-Eldor J. Feeder-free culture of human embryonic stem cells. Methods Enzymol 2006;420:37-49. https://doi.org/10.1016/S0076-6879(06)20003-X
  23. Amit M, Carpenter MK, Inokuma MS, Chiu CP, Harris CP, Waknitz MA, et al. Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Dev Biol 2000;227:271-8. https://doi.org/10.1006/dbio.2000.9912
  24. Hewitt ZA, Amps KJ, Moore HD. Derivation of GMP raw materials for use in regenerative medicine: hESC-based therapies, progress toward clinical application. Clin Pharmacol Ther 2007;82: 448-52. https://doi.org/10.1038/sj.clpt.6100321
  25. Li Y, Powell S, Brunette E, Lebkowski J, Mandalam R. Expansion of human embryonic stem cells in defined serum-free medium devoid of animal-derived products. Biotechnol Bioeng 2005;91: 688-98. https://doi.org/10.1002/bit.20536
  26. Ludwig TE, Levenstein ME, Jones JM, Berggren WT, Mitchen ER, Frane JL, et al. Derivation of human embryonic stem cells in defined conditions. Nat Biotechnol 2006;24:185-7. https://doi.org/10.1038/nbt1177
  27. Braam SR, Zeinstra L, Litjens S, Ward-van Oostwaard D, van den Brink S, van Laake L, et al. Recombinant vitronectin is a functionally defined substrate that supports human embryonic stem cell self-renewal via alphavbeta5 integrin. Stem Cells 2008;26:2257-65. https://doi.org/10.1634/stemcells.2008-0291
  28. Miyazaki T, Futaki S, Hasegawa K, Kawasaki M, Sanzen N, Hayashi M, et al. Recombinant human laminin isoforms can support the undifferentiated growth of human embryonic stem cells. Biochem Biophys Res Commun 2008;375:27-32. https://doi.org/10.1016/j.bbrc.2008.07.111
  29. Xu Y, Zhu X, Hahm HS, Wei W, Hao E, Hayek A, et al. Revealing a core signaling regulatory mechanism for pluripotent stem cell survival and self-renewal by small molecules. Proc Natl Acad Sci U S A 2010;107:8129-34. https://doi.org/10.1073/pnas.1002024107
  30. Sun G, Mao JJ. Engineering dextran-based scaffolds for drug delivery and tissue repair. Nanomedicine (Lond) 2012;7:1771-84. https://doi.org/10.2217/nnm.12.149
  31. Peppas NA, Bures P, Leobandung W, Ichikawa H. Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm 2000;50:27-46. https://doi.org/10.1016/S0939-6411(00)00090-4
  32. Gong Y, Su K, Lau TT, Zhou R, Wang DA. Microcavitary hydrogelmediating phase transfer cell culture for cartilage tissue engineering. Tissue Eng Part A 2010;16:3611-22. https://doi.org/10.1089/ten.tea.2010.0219
  33. Choi E, Jun I, Chang HK, Park KM, Shin H, Park KD, et al. Quantitatively controlled in situ formation of hydrogel membranes in microchannels for generation of stable chemical gradients. Lab Chip 2012;12:302-8. https://doi.org/10.1039/c1lc20777f
  34. Chen H, Xiao L, Du D, Mou D, Xu H, Yang X. A facile construction strategy of stable lipid nanoparticles for drug delivery using a hydrogel-thickened microemulsion system. Nanotechnology 2010;21:015101. https://doi.org/10.1088/0957-4484/21/1/015101
  35. Kang BJ, Ryu HH, Park SS, Kim Y, Woo HM, Kim WH, et al. Effect of matrigel on the osteogenic potential of canine adipose tissuederived mesenchymal stem cells. J Vet Med Sci 2012;74:827-36. https://doi.org/10.1292/jvms.11-0484
  36. Rao SS, Bentil S, DeJesus J, Larison J, Hissong A, Dupaix R, et al. Inherent interfacial mechanical gradients in 3D hydrogels influence tumor cell behaviors. PLoS One 2012;7:e35852. https://doi.org/10.1371/journal.pone.0035852
  37. van der Rest M, Garrone R. Collagen family of proteins. FASEB J 1991;5:2814-23.
  38. Haugh MG, Thorpe SD, Vinardell T, Buckley CT, Kelly DJ. The application of plastic compression to modulate fibrin hydrogel mechanical properties. J Mech Behav Biomed Mater 2012;16:66-72. https://doi.org/10.1016/j.jmbbm.2012.10.009
  39. Talukdar S, Mandal M, Hutmacher DW, Russell PJ, Soekmadji C, Kundu SC. Engineered silk fibroin protein 3D matrices for in vitro tumor model. Biomaterials 2011;32:2149-59. https://doi.org/10.1016/j.biomaterials.2010.11.052
  40. Wang X, Sun L, Maffini MV, Soto A, Sonnenschein C, Kaplan DL. A complex 3D human tissue culture system based on mammary stromal cells and silk scaffolds for modeling breast morphogenesis and function. Biomaterials 2010;31:3920-9. https://doi.org/10.1016/j.biomaterials.2010.01.118
  41. Gurski LA, Jha AK, Zhang C, Jia X, Farach-Carson MC. Hyaluronic acid-based hydrogels as 3D matrices for in vitro evaluation of chemotherapeutic drugs using poorly adherent prostate cancer cells. Biomaterials 2009;30:6076-85. https://doi.org/10.1016/j.biomaterials.2009.07.054
  42. Xu X, Gurski LA, Zhang C, Harrington DA, Farach-Carson MC, Jia X. Recreating the tumor microenvironment in a bilayer, hyaluronic acid hydrogel construct for the growth of prostate cancer spheroids. Biomaterials 2012;33:9049-60. https://doi.org/10.1016/j.biomaterials.2012.08.061
  43. Huang X, Zhang X, Wang X, Wang C, Tang B. Microenvironment of alginate-based microcapsules for cell culture and tissue engineering. J Biosci Bioeng 2012;114:1-8. https://doi.org/10.1016/j.jbiosc.2012.02.024
  44. Sidhu K, Kim J, Chayosumrit M, Dean S, Sachdev P. Alginate microcapsule as a 3D platform for propagation and differentiation of human embryonic stem cells (hESC) to different lineages. J Vis Exp 2012; (61):e3608.
  45. Zhang Y, Choi SW, Xia Y. Modifying the pores of an inverse opal scaffold with chitosan microstructures for truly three-dimensional cell culture. Macromol Rapid Commun 2012;33:296-301. https://doi.org/10.1002/marc.201100695
  46. Zhu JH, Wang XW, Ng S, Quek CH, Ho HT, Lao XJ, et al. Encapsulating live cells with water-soluble chitosan in physiological conditions. J Biotechnol 2005;117:355-65. https://doi.org/10.1016/j.jbiotec.2005.03.011
  47. Benya PD, Shaffer JD. Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell 1982;30:215-24. https://doi.org/10.1016/0092-8674(82)90027-7
  48. Um SH, Lee JB, Park N, Kwon SY, Umbach CC, Luo D. Enzyme-catalysed assembly of DNA hydrogel. Nat Mater 2006;5:797-801. https://doi.org/10.1038/nmat1741
  49. Gauthier MA, Klok HA. Peptide/protein-polymer conjugates: synthetic strategies and design concepts. Chem Commun (Camb) 2008:2591-611.
  50. Levenberg S, Huang NF, Lavik E, Rogers AB, Itskovitz-Eldor J, Langer R. Differentiation of human embryonic stem cells on threedimensional polymer scaffolds. Proc Natl Acad Sci U S A 2003; 100:12741-6. https://doi.org/10.1073/pnas.1735463100
  51. Dickinson LE, Kusuma S, Gerecht S. Reconstructing the differentiation niche of embryonic stem cells using biomaterials. Macromol Biosci 2011;11:36-49. https://doi.org/10.1002/mabi.201000245
  52. Lee ST, Yun JI, Jo YS, Mochizuki M, van der Vlies AJ, Kontos S, et al. Engineering integrin signaling for promoting embryonic stem cell self-renewal in a precisely defined niche. Biomaterials 2010; 31:1219-26. https://doi.org/10.1016/j.biomaterials.2009.10.054
  53. Lee ST, Yun JI, van der Vlies AJ, Kontos S, Jang M, Gong SP, et al. Long-term maintenance of mouse embryonic stem cell pluripotency by manipulating integrin signaling within 3D scaffolds without active Stat3. Biomaterials 2012;33:8934-42. https://doi.org/10.1016/j.biomaterials.2012.08.062
  54. Jang M, Lee ST, Kim JW, Yang JH, Yoon JK, Park JC, et al. A feederfree, defined three-dimensional polyethylene glycol-based extracellular matrix niche for culture of human embryonic stem cells. Biomaterials 2013;34:3571-80. https://doi.org/10.1016/j.biomaterials.2013.01.073

Cited by

  1. Topographic cues of a novel bilayered scaffold modulate dental pulp stem cells differentiation by regulating YAP signalling through cytoskeleton adjustments vol.52, pp.6, 2013, https://doi.org/10.1111/cpr.12676