• Title/Summary/Keyword: Self-renewal

Search Result 161, Processing Time 0.023 seconds

Effects of Culture Dimensions on Maintenance of Porcine Inner Cell Mass-Derived Cell Self-Renewal

  • Baek, Song;Han, Na Rae;Yun, Jung Im;Hwang, Jae Yeon;Kim, Minseok;Park, Choon Keun;Lee, Eunsong;Lee, Seung Tae
    • Molecules and Cells
    • /
    • v.40 no.2
    • /
    • pp.117-122
    • /
    • 2017
  • Despite the fact that porcine embryonic stem cells (ESCs) are a practical study tool, in vitro long-term maintenance of these cells is difficult in a two-dimensional (2D) microenvironment using cellular niche or extracellular matrix proteins. However, a three-dimensional (3D) microenvironment, similar to that enclosing the inner cell mass of the blastocyst, may improve in vitro maintenance of self-renewal. Accordingly, as a first step toward constructing a 3D microenvironment optimized to maintain porcine ESC self-renewal, we investigated different culture dimensions for porcine ICM-derived cells to enhance the maintenance of self-renewal. Porcine ICM-derived cells were cultured in agarose-based 3D hydrogel with self-renewal-friendly mechanics and in 2D culture plates with or without feeder cells. Subsequently, the effects of the 3D microenvironment on maintenance of self-renewal were identified by analyzing colony formation and morphology, alkaline phosphatase (AP) activity, and transcriptional and translational regulation of self-renewal-related genes. The 3D microenvironment using a 1.5% (w/v) agarose-based 3D hydrogel resulted in significantly more colonies with stereoscopic morphology, significantly improved AP activity, and increased protein expression of self-renewal-related genes compared to those in the 2D microenvironment. These results demonstrate that self-renewal of porcine ICM-derived cells can be maintained more effectively in a 3D microenvironment than in a 2D microenvironment. These results will help develop novel culture systems for ICM-derived cells derived from diverse species, which will contribute to stimulating basic and applicable studies related to ESCs.

Cell Lineage, Self-Renewal, and Epithelial-to-Mesenchymal Transition during Secondary Neurulation

  • Kawachi, Teruaki;Tadokoro, Ryosuke;Takahashi, Yoshiko
    • Journal of Korean Neurosurgical Society
    • /
    • v.64 no.3
    • /
    • pp.367-373
    • /
    • 2021
  • Secondary neurulation (SN) is a critical process to form the neural tube in the posterior region of the body including the tail. SN is distinct from the anteriorly occurring primary neurulation (PN); whereas the PN proceeds by folding an epithelial neural plate, SN precursors arise from a specified epiblast by epithelial-to-mesenchymal transition (EMT), and undergo self-renewal in the tail bud. They finally differentiate into the neural tube through mesenchymal-to-epithelial transition (MET). We here overview recent progresses in the studies of SN with a particular focus on the regulation of cell lineage, self-renewal, and EMT/MET. Cellular mechanisms underlying SN help to understand the functional diversity of the tail in vertebrates.

The standardized Korean Red Ginseng extract and its ingredient ginsenoside Rg3 inhibit manifestation of breast cancer stem cell-like properties through modulation of self-renewal signaling

  • Oh, Jisun;Yoon, Hyo-Jin;Jang, Jeong-Hoon;Kim, Do-Hee;Surh, Young-Joon
    • Journal of Ginseng Research
    • /
    • v.43 no.3
    • /
    • pp.421-430
    • /
    • 2019
  • Background: The ginsenoside Rg3, one of active components of red ginseng, has chemopreventive and anticancer potential. Cancer stem cells retain self-renewal properties which account for cancer recurrence and resistance to anticancer therapy. In our present study, we investigated whether the standardized Korean Red Ginseng extract (RGE) and Rg3 could modulate the manifestation of breast cancer stem cell-like features through regulation of self-renewal activity. Methods: The effects of RGE and Rg3 on the proportion of $CD44^{high}/CD24^{low}$ cells, as representative characteristics of stem-like breast cancer cells, were determined by flow cytometry. The mammosphere formation assay was performed to assess self-renewal capacities of breast cancer cells. Aldehyde dehydrogenase activity of MCF-7 mammospheres was measured by the ALDEFLUOR assay. The expression levels of Sox-2, Bmi-1, and P-Akt and the nuclear localization of hypoxia inducible $factor-1{\alpha}$ in MCF-7 mammospheres were verified by immunoblot analysis. Results: Both RGE and Rg3 decreased the viability of breast cancer cells and significantly reduced the populations of $CD44^{high}/CD24^{low}$ in MDA-MB-231 cells. RGE and Rg3 treatment attenuated the expression of Sox-2 and Bmi-1 by inhibiting the nuclear localization of hypoxia inducible $factor-1{\alpha}$ in MCF-7 mammospheres. Suppression of the manifestation of breast cancer stem cell-like properties by Rg3 was mediated through the blockade of Akt-mediated self-renewal signaling. Conclusion: This study suggests that Rg3 has a therapeutic potential targeting breast cancer stem cells.

Adequate concentration of B cell leukemia/lymphoma 3 (Bcl3) is required for pluripotency and self-renewal of mouse embryonic stem cells via downregulation of Nanog transcription

  • Kang, Songhwa;Yun, Jisoo;Kim, Da Yeon;Jung, Seok Yun;Kim, Yeon Ju;Park, Ji Hye;Ji, Seung Taek;Jang, Woong Bi;Ha, Jongseong;Kim, Jae Ho;Baek, Sang Hong;Kwon, Sang-Mo
    • BMB Reports
    • /
    • v.51 no.2
    • /
    • pp.92-97
    • /
    • 2018
  • B cell leukemia/lymphoma 3 (Bcl3) plays a pivotal role in immune homeostasis, cellular proliferation, and cell survival, as a co-activator or co-repressor of transcription of the $NF-{\kappa}B$ family. Recently, it was reported that Bcl3 positively regulates pluripotency genes, including Oct4, in mouse embryonic stem cells (mESCs). However, the role of Bcl3 in the maintenance of pluripotency and self-renewal activity is not fully established. Here, we report the dynamic regulation of the proliferation, pluripotency, and self-renewal of mESCs by Bcl3 via an influence on Nanog transcriptional activity. Bcl3 expression is predominantly observed in immature mESCs, but significantly decreased during cell differentiation by LIF depletion and in mESC-derived EBs. Importantly, the knockdown of Bcl3 resulted in the loss of self-renewal ability and decreased cell proliferation. Similarly, the ectopic expression of Bcl3 also resulted in a significant reduction of proliferation, and the self-renewal of mESCs was demonstrated by alkaline phosphatase staining and clonogenic single cell-derived colony assay. We further examined that Bcl3-mediated regulation of Nanog transcriptional activity in mESCs, which indicated that Bcl3 acts as a transcriptional repressor of Nanog expression in mESCs. In conclusion, we demonstrated that a sufficient concentration of Bcl3 in mESCs plays a critical role in the maintenance of pluripotency and the self-renewal of mESCs via the regulation of Nanog transcriptional activity.

Development of a Three-dimensional Hydrogel System for the Maintenance of Porcine Spermatogonial Stem Cell Self-renewal

  • Park, Ji Eun;Park, Min Hee;Kim, Min Seong;Yun, Jung Im;Choi, Jung Hoon;Lee, Eunsong;Lee, Seung Tae
    • Journal of Embryo Transfer
    • /
    • v.32 no.4
    • /
    • pp.343-351
    • /
    • 2017
  • Porcine spermatogonial stem cells (SSCs) prefer three-dimensional (3D) culture systems to 2D ones for the maintenance of self-renewal. Of the many 3D culture systems, agar-based hydrogels are candidates for supporting porcine SSC self-renewal, and there are various types of agar powder that can be used. In this study, we sought to identify an agar-based 3D hydrogel system that exhibited strong efficacy in the maintenance of porcine SSC self-renewal. First, 3D hydrogels with different mechanics were prepared with various concentrations of Bacto agar, lysogeny broth (LB) agar, and agarose powder, and the 3D hydrogel with the strongest alkaline phosphatase (AP) activity and greatest increase in colony size was identified for the different types of agar powder. Second, among the porcine SSCs cultured in the different 3D hydrogels, we analyzed the colony formation, morphology, and size; AP activity; and transcription and translation of porcine SSC-related genes, and these were compared to determine the optimal 3D hydrogel system for the maintenance of porcine SSC self-renewal. We found that 0.6% (w/v) Bacto agar-, 1% (w/v) LB agar-, and 0.2% (w/v) agarose-based 3D hydrogels showed the strongest maintenance of AP activity and the most pronounced increase in colony size in the culture of porcine SSCs. Moreover, among these hydrogels, the strongest transcription and translation of porcine SSC-related genes and largest colony size were detected in porcine SSCs cultured in the 0.2% (w/v) agarose-based 3D hydrogel, whereas there were no significant differences in colony formation and morphology. These results demonstrate that the 0.2% (w/v) agarose-based 3D hydrogel can be effectively used for the maintenance of porcine SSC self-renewal.

Self-renewal and circulating capacities of metastatic hepatocarcinoma cells required for collaboration between TM4SF5 and CD44

  • Lee, Doohyung;Lee, Jung Weon
    • BMB Reports
    • /
    • v.48 no.3
    • /
    • pp.127-128
    • /
    • 2015
  • Tumor metastasis involves circulating and tumor-initiating capacities of metastatic cancer cells. Hepatic TM4SF5 promotes EMT for malignant growth and migration. Hepatocellular carcinoma (HCC) biomarkers remain unexplored for metastatic potential throughout metastasis. Here, novel TM4SF5/CD44 interaction-mediated self-renewal and circulating tumor cell (CTC) capacities were mechanistically explored. TM4SF5-dependent sphere growth was correlated with $CD133^+$, $CD24^-$, ALDH activity, and a physical association between CD44 and TM4SF5. The TM4SF5/CD44 interaction activated c-Src/STAT3/ Twist1/ B mi1 signaling for spheroid formation, while disturbing the interaction, expression, or activity of any component in this signaling pathway inhibited spheroid formation. In serial xenografts of less than 5,000 cells/injection, TM4SF5-positive tumors exhibited locally-increased CD44 expression, suggesting tumor cell differentiation. TM4SF5-positive cells were identified circulating in blood 4 to 6 weeks after orthotopic liver-injection. Anti-TM4SF reagents blocked their metastasis to distal intestinal organs. Altogether, our results provide evidence that TM4SF5 promotes self-renewal and CTC properties supported by $CD133^+/TM4SF5^+/CD44^+^{(TM4SF5-bound)}/ALDH^+/CD24^-$ markers during HCC metastasis.

Effect of Inhibitor of Glycogen Synthase Kinase 3 on Self-Renewal of Human Embryonic Stem Cells

  • Lee Eunyoung;Rho Jeung-yon;Yu Kwon;Paik Sang-Gi;Lee Kyung-Kwang;Han Yong-Mahn
    • Reproductive and Developmental Biology
    • /
    • v.29 no.2
    • /
    • pp.93-99
    • /
    • 2005
  • Human embryonic stem cells (hESCs) derived from the inner cell mass of blastocysts have the ability to renew themselves and to differentiate into cell types of all lineage. The present study was carried out to investigate whether the Wnt signaling pathway is related to maintaining self-renewal of hESCs. Glycogen Synthase Kinase 3 (GSK-3) inhibitor, BIO ((2'Z,3'E)-6-Bromoindirubin-3'-oxime) was treated to Miz-hES1 line for activation of Wnt signaling pathway. BIO-nontreated hESCs (control) and BID-treated hESCs were cultured for 5 days in the modified feeder-free system. During the culture of hESCs, differences were observed in the colony morphology between 2 groups. Controls were spread outwards whereas BIO-nontreated hESCs were clumped in the center and the differentiated cells were spreading outwards in the edges. The results of stem cell specific marker staining indicated that control were differentiated in large part whereas BIO-treated hESCs maintain self-renewal in the center of the colony. The results of lineage marker staining suggested that outer cells of the hESC colony were differentiated to the neuronal progenitor cells in both control and BIO-treated hESC. These results indicate that Wnt signaling is related to self-renewal in hESCs. In addition, control group showed higher composition of apoptotic cells $(23.76\%)$ than the BID-treated group $(5.59\%)$. These results indicate that BIO is effective on antapoptosis of hESCs.

Effects of Extracellular Signaling on the Endogenous Expression of Self-Renewal-Stimulating Factor Genes in Mouse Embryonic Stem Cells

  • Gong, Seung-Pyo;Lee, Seung-Tae
    • Reproductive and Developmental Biology
    • /
    • v.36 no.1
    • /
    • pp.13-19
    • /
    • 2012
  • In order to provide the basis for developing practical mouse embryonic stem cells (mESCs) culture method, how the endogenous level of self-renewal-stimulating factor genes was altered in the mESCs by different extracellular signaling was investigated in this study. For different extracellular signaling, mESCs were cultured in 2 dimension (D), 3D and integrin-stimulating 3D culture system in the presence or absence of leukemia inhibitory factor (LIF) and transcriptional level of $Lif$, $Bmp4$ and $Wnt3a$ was evaluated in the mESCs cultured in each system. The expression of three genes was significantly increased in 3D system relative to 2D system under LIF-containing condition, while only $Wnt3a$ expression was increased by 3D culture under LIF-free condition. Stimulation of integrin signaling in mESCs within 3D system with exogenous LIF significantly up-regulated transcriptional level of $Bmp4$, but did not induce transcriptional regulation of $Lif$ and $Wnt3a$. In the absence of LIF inside 3D system, the expression of $Lif$ and $Bmp4$ was significantly increased by integrin signaling, while it significantly decreased $Wnt3a$ expression. Finally, the signal from exogenous LIF significantly caused increased expression of $Lif$ in 2D system, decreased expression of $Bmp4$ in both 2D and 3D system, and decreased expression of $Wnt3a$ in integrin-stimulating 3D system. From these results, we identified that endogenous expression level of self-renewal-stimulating factor genes in mESCs could be effectively regulated through artificial and proper manipulation of extracellular signaling. Moreover, synthetic 3D niche stimulating endogenous secretion of self-renewal-stimulating factors will be able to help develop growth factor-free maintenance system of mESCs.

Suppression of HIF-1α by Valproic Acid Sustains Self-Renewal of Mouse Embryonic Stem Cells under Hypoxia In Vitro

  • Lee, Hyo-Jong;Kim, Kyu-Won
    • Biomolecules & Therapeutics
    • /
    • v.20 no.3
    • /
    • pp.280-285
    • /
    • 2012
  • The developing embryo naturally experiences relatively low oxygen conditions in vivo. Under in vitro hypoxia, mouse embryonic stem cells (mESCs) lose their self-renewal activity and display an early differentiated morphology mediated by the hypoxia-inducible factor-$1{\alpha}$ (HIF-$1{\alpha}$). Previously, we demonstrated that histone deacetylase (HDAC) is activated by hypoxia and increases the protein stability and transcriptional activity of HIF-$1{\alpha}$ in many human cancer cells. Furthermore HDAC1 and 3 mediate the differentiation of mECSs and hematopoietic stem cells. However, the role of HDACs and their inhibitors in hypoxia-induced early differentiation of mESCs remains largely unknown. Here, we examined the effects of several histone deacetylase inhibitors (HDACIs) on the self-renewal properties of mESCs under hypoxia. Inhibition of HDAC under hypoxia effectively decreased the HIF-$1{\alpha}$ protein levels and substantially improved the expression of the LIF-specific receptor (LIFR) and phosphorylated-STAT3 in mESCs. In particular, valproic acid (VPA), a pan HDACI, showed dramatic changes in HIF-$1{\alpha}$ protein levels and LIFR protein expression levels compared to other HDACIs, including sodium butyrate (SB), trichostatin A (TSA), and apicidin (AP). Importantly, our RT-PCR data and alkaline phosphatase assays indicate that VPA helps to maintain the self-renewal activity of mESCs under hypoxia. Taken together, these results suggest that VPA may block the early differentiation of mESCs under hypoxia via the destabilization of HIF-$1{\alpha}$.

Nitrated Proteome in Human Embryonic Stem Cells

  • Kang, Jeong Won;Hwang, Daehee;Kim, Kwang Pyo
    • Mass Spectrometry Letters
    • /
    • v.7 no.4
    • /
    • pp.85-90
    • /
    • 2016
  • Post-translational modifications (PTMs) of proteins regulate self-renewal and differentiation in embryonic stem cells (ESCs). Nitration of tyrosine residues of proteins in ESCs modulates their downstream pathways, which can affect self-renewal and differentiation. However, protein tyrosine nitration (PTN) in ESCs has been rarely studied. We reviewed 23 nitrated sites in stem cell proteins. Functional enrichment analysis showed that these nitrated proteins are involved in signal transduction, cell adhesion and migration, and cell proliferation in ESCs. Comparison between the nitrated and known phosphorylated sites revealed that 7 nitrated sites had overlapping phosphorylated sites, indicating functional links of PTNs to their associated signaling pathways in ESCs. Therefore, nitrated proteome provides a basis for understanding potential roles of PTN in self-renewal and differentiation of ESCs.