DOI QR코드

DOI QR Code

베이지안 게임모델을 적용한 P-persistent MAC 기반 주기적 안정 메시지 전송 방법

A Stability of P-persistent MAC Scheme for Periodic Safety Messages with a Bayesian Game Model

  • 권영호 (한양대학교 전자컴퓨터통신공학부 차세대네트워크 연구실) ;
  • 이병호 (한양대학교 컴퓨터공학부 차세대네트워크 연구실)
  • 투고 : 2013.06.10
  • 심사 : 2013.07.17
  • 발행 : 2013.07.31

초록

차량통신간 자동차의 정보를 포함하는 메시지인 비콘을 주변의 자동차들에게 주기적으로 전송함으로 차량간의 안전을 보장해야 할 필요가 있다. 그러나 IEEE 802.11p/WAVE 환경에서는 혼잡상황에서 비콘 전송을 경쟁윈도우(Contention window)를 기반으로 한 MAC (Medium Access Control)에서 해결하도록 하였기 때문에 비콘 전송 과정에 충돌이 발생한다. 본 논문에서는 차량 혼잡 상황에서 비콘의 충돌을 막기 위해서 MAC 구조를 슬롯 p-persistent CSMA (Carrier Sense Multiple Access)라 가정하여 전송 확률에 대한 보수행렬(payoff)을 이용한 비 협조적 베이지안 게임이론을 적용하여 베이지안 내쉬 균형점(BNE)을 도출하였다. 본 논문에서는 도출된 BNE를 가지고 포화 상태에서 비콘 전송률을 높일 수 있는 혼잡 제어 알고리즘을 제안했다. 제안된 알고리즘으로 경쟁윈도우크기와 주변 자동차 수에 관련된 함수를 통해 전송 확률을 계산하였다. 시뮬레이션 결과를 통해서 제안된 알고리즘이 안정적으로 동작함을 보였다.

For the safety messages in IEEE 802.11p/WAVE vehicles network environment, strict periodic beacon broadcasting requires status advertisement to assist the driver for safety. In crowded networks where beacon message are broadcasted at a high number of frequencies by many vehicles, which used for beacon sending, will be congested by the wireless medium due to the contention-window based IEEE 802.11p MAC. To resolve the congestion, we consider a MAC scheme based on slotted p-persistent CSMA as a simple non-cooperative Bayesian game which involves payoffs reflecting the attempt probability. Then, we derive Bayesian Nash Equilibrium (BNE) in a closed form. Using the BNE, we propose new congestion control algorithm to improve the performance of the beacon rate under saturation condition in IEEE 802.11p/WAVE vehicular networks. This algorithm explicitly computes packet delivery probability as a function of contention window (CW) size and number of vehicles. The proposed algorithm is validated against numerical simulation results to demonstrate its stability.

키워드

참고문헌

  1. IEEE, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications Amendment 6: Wireless Access in Vehicular Environments, IEEE Std. 802.11p-2010, 2010.
  2. IEEE, IEEE Standard for Wireless Access in Vehicular Environments (WAVE)-Networking Services, IEEE Std. 1609.3-2010, 2010.
  3. IEEE, IEEE Standard for Wireless Access in Vehicular Environments (WAVE)-Multi-channel Operation, IEEE Std. 1609.4-2010, 2010.
  4. F. Bai and H. Krishnan, "Reliability analysis of DSRC wireless communication for vehicle safety applications," in Proc. IEEE Intell. Transportation Syst. Conf. (ITSC), pp. 355-362, Toronto, Canada, Sep. 2006.
  5. O. Tonguz, N. Wisitpongphan, F. Bai, P. Mudalige, and V. Sadekar, "Broadcasting in VANET," in Proc. IEEE Mobile Networking Veh. Environments, pp. 7-12, Anchorage, U.S.A., May 2007.
  6. F. Ye, M. Adams, and S. Roy, "V2V wireless communication protocol for rear-end collision avoidance on highways," in Proc. IEEE Int. Conf. Commun. Workshops (ICC), pp. 375-379, Beijing, China, May 2008.
  7. A. Boukerche, C. Rezende, and R. W. Pazzi, "Improving neighbor localization in vehicular Ad Hoc networks to avoid overhead from periodic messages," in Proc. IEEE GLOBECOM, pp 1-6, Honolulu, U.S.A., Nov.-Dec. 2009.
  8. M. Torrent-Moreno, J. Mittag, P. Santi, and H. Hartenstein, "Vehicle-to-vehicle communication: fair transmit power control for safety-critical information," IEEE Trans. Veh. Technol., vol 58, no. 7, pp 3684-3703, Sep. 2009. https://doi.org/10.1109/TVT.2009.2017545
  9. C. L. Huang, Y. P. Fallah, R. Sengupta, and H. Krishman, "Adaptive intervehicle communication control for cooperative safety systems," IEEE Network, vol. 24, no. 1, pp. 6-13, Jan.-Feb. 2010.
  10. R. S. Y. Fallah, C. L. Huang, and H. Krishnan, "Analysis of information dissemination in vehicular Ad-Hoc networks with application to cooperative vehicle safety systems," IEEE Trans. Veh. Technol., vol. 60, no. 1, pp. 233-247, Jan. 2011. https://doi.org/10.1109/TVT.2010.2085022
  11. M. J. Osborne, An Introduction to Game Theory, Oxford University Press, 2003
  12. F. Cali, M. Conti, and E. Gregori, "Dynamic tuning of the IEEE 802.11 protocol to achieve a theoretical throughput limit," IEEE/ACM Trans. Networking, vol. 8, no. 6, pp. 785-799, Dec. 2000. https://doi.org/10.1109/90.893874
  13. Y. Wang, A. Ahmed, B. Krishnamachari, and K. Psounis, "IEEE 802.11p performance evaluation and protocol enhancement," in Proc. IEEE Int. Conf. Veh. Electron. Safety (ICVES 2008), pp. 317-322, Columbus, U.S.A., Sep. 2008.
  14. G. Bianchi, "Performance analysis of the IEEE 802.11 distributed coordination function," IEEE J. Selected Areas Commun., vol. 18, no. 3, pp. 535-547, Mar. 2000. https://doi.org/10.1109/49.840210
  15. C. Han, M. Dianati, R. Tafazolli, and R. Kernchen. "Throughput analysis of the IEEE 802.11p enhanced distributed channel access function in vehicular environment." in Proc. IEEE 72nd Veh. Technol. Conf. Fall (VTC 2010-Fall), pp.1-5, Ottawa, Canada, Sep. 2010.
  16. Y. Wang, A. Ahmed, B. Krishnamachari, and K. Psounis, "IEEE 802.11p performance evaluation and protocol enhancement," in Proc. 2008 IEEE Int. Conf. Veh. Electron. Safety (ICVES), pp. 317-322, Columbus, U.S.A., Sep. 2008.
  17. W. Alasmary and W. Zhuang, "The mobility impact in IEEE 802.11p infrastructureless vehicular networks," in Proc. IEEE 72nd Veh. Technol. Conf. Fall (VTC 2010-Fall), pp. 1- 5, Ottawa, Canada, Sep. 2010.
  18. W. Luo and A. Ephremides, "Stability of N interacting queues in random-access systems," IEEE Trans. Inform. Theory, vol. 45, no. 5, pp. 1579-1587, July 1999. https://doi.org/10.1109/18.771161

피인용 문헌

  1. Channel assignment for 802.11p-based multi-radio multi-channel networks considering beacon message dissemination using Nash bargaining solution vol.15, pp.3, 2014, https://doi.org/10.7472/jksii.2014.15.3.63
  2. Bayesian game-theoretic approach based on 802.11p MAC protocol to alleviate beacon collision under urban VANETs vol.17, pp.1, 2016, https://doi.org/10.1007/s12239-016-0018-9