DOI QR코드

DOI QR Code

Chemical HF Treatment for Rear Surface Passivation of Crystalline Silicon Solar Cells

  • Choi, Jeong-Ho (Department of Electrical & Electronic & Communication Engineering, Korea University of Technology and Education) ;
  • Roh, Si-Cheol (Department of Electrical & Electronic & Communication Engineering, Korea University of Technology and Education) ;
  • Jung, Jong-Dae (Department of Electrical & Electronic & Communication Engineering, Korea University of Technology and Education) ;
  • Seo, Hwa-Il (Department of Electrical & Electronic & Communication Engineering, Korea University of Technology and Education)
  • 투고 : 2013.02.18
  • 심사 : 2013.05.21
  • 발행 : 2013.08.25

초록

P-type Si wafers were dipped in HF solution. The minority carrier lifetime (lifetime) increased after HF treatment due to the hydrogen termination effect. To investigate the film passivation effect, PECVD was used to deposit $SiN_x$ on both HF-treated and untreated wafers. $SiN_x$ generally helped to improve the lifetime. A thermal process at $850^{\circ}C$ reduced the lifetime of all wafers because of the dehydrogenation at high temperature. However, the HF-treated wafers showed better lifetime than untreated wafers. PERCs both passivated and not passivated by HF treatment were fabricated on the rear side, and their characteristics were measured. The short-circuit current density and the open-circuit voltage were improved due to the effectively increased lifetime by HF treatment.

키워드

참고문헌

  1. K. H. Kim and J. S. Yi, Introduction to Solar Cell Production, (Dooyangsa, Seoul, 2009).
  2. J. H. Lee, D. G. Lim and J. S. Yi, Principle of solar cell, (Hongrung publishing company, Seoul, 2005).
  3. D. Y. Lee, H. H. Lee, J. Y. Ahn, H. J. Park, J. H. Kim, H. J. Kwon and J. W. Jeong, A new back surface passivation stack for thin crystalline silicon solar cells with screen-printed back contacts, Solar Energy Materials & Solar Cells 95, p. 26-29 (2011) [DOI: http://dx.doi.org/10.1016/j.solmat.2010.05.004].
  4. Ryo Ozaki, Hidenori Yashiki, Ryusuke Imai, Sachiyo Ooka, Yuji Kurimoto, Ichiro Yamasaki, Yoshihiro Yamamoto and Tatsuo Saga, Fabrication of SiN rear passivated thin multi-crystalline silicon solar cell with 30 ${\mu}m$-wide screen-printed front electrode, 24th EUPVSEC, p. 1175-1178 (2009).
  5. H. Angermann, W. Henrion, M. Rebien and A. Röseler, Wetchemical preparation and spectroscopic characterization of Si interfaces, Appl. Surf. Sci. 235, p. 322-339 (2004) [DOI: http://dx.doi.org/10.1016/j.apsusc.2004.05.105].
  6. H. Angermann, W. Henrion, M. Rebien and A. Röseler, Wetchemical passivation and characterization of silicon interfaces for solar cell applications, Solar Energy Mater. & Solar Cells 83, p. 331-346 (2004) [DOI: http://dx.doi.org/10.1016/j.solmat.2004.01.031].
  7. H. Angermann, Passivation of structured p-type silicon interfaces: Effect of surface morphology and wet-chemical pretreatment, Appl. Surf. Sci. 254, p. 8067-8074 (2008) [DOI: http://dx.doi.org/10.1016/j.apsusc.2008.03.022].
  8. A. Laades, J. Brauer, U. Sturzebecher, K. Neckermann, K. Klimm, M. Blech, K. Lauer, A. Lawerenz and H. Angermann, Wet-chemical treatment of solar grade CZ silicon prior to surface passivation, 24th EUPVSEC, p. 1640-1644 (2009).
  9. S. G. Kwon, W. Y. Jeong and J. H. Wang, No damage and high selective cleaning technology for very large scale integrated circuit, ITFIND, p. 1-33 (2004).
  10. Florence W. Chen, Tsu-Tsung A. Li and Jeffrey E. Cotter, PECVD silicon nitride surface passivation for high-efficiency n-type silicon solar cells, IEEE 4th WCPEC 1, p. 1020-1023 (2006).
  11. S. Dauwe, L. Mittelstadt, A. Metz and R. Hezel Experimental Evidence of Parasitic Shunting in Silicon Nitride Rear Surface Passivated Solar Cells, Prog. Photovolt: Res. Appl., p. 271-278 (2002).
  12. K. D. Mackenzie, D. J. Johnson, M. W. DeVre, R. J. Westerman and B. H. Reelfs, Stress control of Si-based PECVD dielectrics, 207th Electrochemical Society Meeting, PV2005-01, p. 148-159 (2005).
  13. Korea University of Technology and Education $E^2$-Semicinductor Equipment HRD Center, The study of manufacturing process for the high efficiency screen printed crystalline solar cell (Korea University of Technology and Education, Cheonan, 2010)
  14. J. H. Choi, S. C. Roh, D. Y. Yu, Z. H. Li, Y. C. Kim and H. I. Seo, A Study on HF Chemical Passivation for Crystalline Silicon Solar Cell Application, J. the Semiconductor & Display Equipment Technology 10(1), p. 51-55 (2011).
  15. G. Agostinelli, P. Choulat, H. F. W. Dekkers, E. Vermarien and G. Beaucarne, Rear surface passivation for industrial solar cells on thin substrates, IEEE 4th WCPEC 1, p. 1004-1007 (2006).
  16. S. Dauwe, L. Mittelstad, A. Metz, J. Schmidt and R. Hezel, Lowtemperature rear surface passivation schemes for >20% efficient silicon solar cells, 3rd World Conference on Photovoltaic Energy Conversion, p. 1395-1398 (2003).
  17. J. Dupuis, E. Fourmond, O. Nichiporuk, F. Gibaja and M. Lemiti, Rear passivation schemes for industrial silicon solar cells, 23rd EUPVSEC, p. 1633-1636 (2008).
  18. F. Llopis and I. Tobias, The role of rear surface in thin silicon solar cells, Solar Energy Materials & Solar Cells 87, p. 481-492 (2005) [DOI: http://dx.doi.org/10.1016/j.solmat.2004.06.015].
  19. P. Ortega, A. Orpella, G. Lopez, I. Martin, C. Voz, R. Alcubilla, I. Snchez-Aniorte, M. Colina, F. Perales and C. Molpeceres, Optimization of the rear point contact scheme of crystalline silicon solar cells using laser-fired contacts, 25th EUPVSEC, p. 2126-2129 (2010).

피인용 문헌

  1. Surface passivation of boron emitters on n-type c-Si solar cells using silicon dioxide and a PECVD silicon oxynitride stack vol.6, pp.74, 2016, https://doi.org/10.1039/C6RA11043F
  2. Laser Fired Local Back Contact C-Si Solar Cells Using Phosphoric Acid for Back Surface Field vol.44, pp.4, 2015, https://doi.org/10.1007/s11664-015-3652-5
  3. Performance Improvement of Microcrystalline p-SiC/i-Si/n-Si Thin Film Solar Cells by Using Laser-Assisted Plasma Enhanced Chemical Vapor Deposition vol.2014, 2014, https://doi.org/10.1155/2014/795152